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Drug-target residence time (t = 1/koff, where koff is the dissociation
rate constant) has become an important index in discovering better-
or best-in-class drugs. However, little effort has been dedicated to
developing computational methods that can accurately predict this
kinetic parameter or related parameters, koff and activation free
energy of dissociation (ΔG≠

off). In this paper, energy landscape theory
that has been developed to understand protein folding and function
is extended to develop a generally applicable computational frame-
work that is able to construct a complete ligand-target binding free
energy landscape. This enables both the binding affinity and the
binding kinetics to be accurately estimated. We applied this method
to simulate the binding event of the anti-Alzheimer’s disease drug
(−)−Huperzine A to its target acetylcholinesterase (AChE). The com-
putational results are in excellent agreement with our concurrent
experimental measurements. All of the predicted values of binding
free energy and activation free energies of association and dissoci-
ation deviate from the experimental data only by less than 1 kcal/
mol. Themethod also provides atomic resolution information for the
(−)−Huperzine A binding pathway, which may be useful in design-
ing more potent AChE inhibitors. We expect this methodology to be
widely applicable to drug discovery and development.

thermodynamics | flexible docking | metastable states | transition states

Traditionally, drug discovery is driven by the idea that binders
with higher binding affinity to a target should be more effica-

cious than those with lower binding affinity to the same target (1).
It is obvious that the efficacy of a drug is not only associated with
thermodynamics but also related to the binding kinetics between
the drug and a defined target (2). Numerous examples demon-
strated that drug efficacy does not always linearly correlate with
binding affinity (3). Therefore, an affinity-based drug discovery
approach is less than complete, and an emerging paradigm em-
phasizing both thermodynamics and kinetics of drug action has
been widely recognized and appreciated in drug discovery (1). In
particular, ligand–receptor binding kinetics (BK), which have been
overlooked in traditional drug discovery approaches, are un-
precedentedly emphasized in almost all steps along the drug dis-
covery and development pipeline (1, 4, 5). Indeed, a statistical
analysis on existing drugs demonstrated that the BK profile can be
a key differentiator between different drugs (6). Drug-target res-
idence time or dissociative half-life (t1/2 = 0.693/koff) has become
an important index in lead optimization (4). Thus, the BK-based
paradigm will be promising in discovering better- or best-in-class
drugs (1).
Like the experimental approaches for drug discovery, the cur-

rent computational drug design methods mainly emphasize bind-
ing affinity (7–11). Nevertheless, despite more than 30 y of effort,
predicting binding free energies for ligands interacting to targets
with sufficient accuracy is still an unsolved problem (12). The
shortages of existing methods for predicting binding affinity—fast
but inaccurate or accurate but slow—seem to be turning against the

further expansion of the drug design approaches from an affinity-
emphasized paradigm to a BK-emphasized paradigm. Recently,
energy landscape theory, which was originally used to investigate
protein folding problems (13–15), has been extended to study
ligand–macromolecule binding (16–21). To extend the ideas from
energy landscape theory for protein folding and function to
quantitative drug design, it is necessary to develop a computational
method that may produce a rigorous and precise binding free en-
ergy landscape (BFEL) for a ligand binding to its target protein.
If such a landscape is produced, the binding free energy profile

and free energy barriers for association and dissociation may be
obtained from the BFEL and kon and koff values could thus be
derived according to the Eyring equation if the transmission fac-
tors are known. For most ligand–protein interactions, the trans-
mission factors are unknown; therefore it is difficult to directly
predict the absolute values of kon and koff (22). Nevertheless, for
the drug design case we expect that changes to the ligandwill affect
barriers much more than the transmission coefficient, which for
small molecules should not be large. Therefore, prediction of the
activation free energy of dissociation should be sufficient for drug
discovery.
Recently, an increasing number of groups have been in-

terested in kinetic simulation and prediction for ligand–protein
binding. By performing 495 molecular dynamics simulations,
Buch et al. constructed the binding process for zamidine to
trypsin and obtained accurate binding free energy with an error
of ∼1 kcal/mol compared with the experimental value, although
both the predicated kon and koff deviate from the experimental
values by at least an order of magnitude (23). Huang and
Caflisch investigated the spontaneous dissociation processes of
six small ligands from the active site of the FK506 binding pro-
tein (24). However, the calculation results seem qualitative
rather than quantitative because their constructed BFEL is not
complete and accurate (24). Held et al. developed a computa-
tional method to analyze the ensemble of association pathways
and used this approach to study the binding of a phosphate ion to
the Escherichia coli phosphate-binding protein (25). Moreover,
the published results for kinetics simulations have not been
concerned with pharmacologically important targets and ligands
as complex as real drugs. On the other hand, all these predictions
need large-scale molecular dynamics simulations, which are too
expensive to be applied in drug design.
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Here, we present a computational method that could construct
a complete free energy landscape for a drug binding to its target,
from which the binding free energy (ΔGo

binding) and activation free
energies for association (ΔG≠

on) and dissociation (ΔG≠
off) can be

quantitatively estimated. We applied this method to simulate the
binding process between (−)−Huperzine A (HupA), a marketed
natural product drug against Alzheimer’s disease (26), and its
target acetylcholinesterase (AChE) (27). The prediction is in ex-
cellent agreement with the experimental result we performed in
parallel in the present study. The predicted value of ΔGo

binding is
very close to the experimental value, and the predicted values of
ΔG≠

on and ΔG≠
off deviate from the experimental data only by 2.4

and 1.6 kJ/mol, respectively. Additionally, our method also pro-
vided the atomic resolution information of the HupA binding
pathway, possible binding transition states, and metastable states,
which should be useful in designing more potent AChE inhibitors.

Results
Strategy for Construction of Binding Free Energy Landscape. The
results of this work are based on the analysis of computational and
experimental data for the binding process between HupA and
Torpedo californica acetylcholinesterase (TcAChE). The detailed
procedure for constructing BFEL is described in SI Text and Fig. S1.
Briefly, the computational flow is as follows: (i) Analyze the target
structure and address the possible binding pockets or gorges for the
ligand entering or leaving from the active site. (ii) Construct a lattice
model for the target protein by dividing the large cubic box
surrounding the protein into a number of small cubic boxes
(lattices).(iii) Construct ligand–receptor binding configuration
space by docking the ligand molecule into the lattices that en-
close the possible binding pockets and the ligand entering and
leaving paths. (iv) Calculate the binding free energy for each
ligand–receptor binding configuration. (v) Construct the BFEL
surface, address the possible binding (unbinding) pathway(s),
and estimate the corresponding parameters of thermodynamics
and kinetics. To achieve this goal, we improved the molecular
mechanic-generalized Born surface area (MM-GBSA) method
for free energy calculation and developed a unique multiobjective

algorithm-based flexible docking method for binding configuration
sampling (details in SI Text).

Binding Free Energy Calculation. Balancing speed and physical rig-
orousness, we used a hybrid MM-GBSA method by combining
pair-wise–based and grid-based methods (28, 29) to calculate the
binding free energy. Furthermore, to enhance the calculation ac-
curacy, we modified the formulation of MM-GBSA (details in SI
Text); i.e., the four energy terms of MM-GBSA were weighted by
four coefficients (ω1–ω4), respectively,

ΔGo
binding =ω1ΔEvdw +ω2ΔEes +ω3ΔGgb +ω4ΔGsa; [1]

whereΔEvdw,ΔEes,ΔGgb, andΔGsa are, respectively, the Lennard–
Jones 6–12 potential, Coulombic potential, and polarization and
nonpolarization components of salvation free energy. Weighting
coefficients ω1–ω4 are obtained by fitting computational data with
experimental data, using the multiple linear regression method
(details in SI Text). In the present study, the experimental binding
data of eight available AChE inhibitors with TcAChE were used
to fit the values of ω1–ω4 (Table S1). The fitted values of ω1–ω4
for TcAChE are 0.2245, −0.4818, −0.6288, and −3.6828, respec-
tively (details in SI Text). The predicted binding free energies for
these eight inhibitors to TcAChE correlated well with the exper-
imental data (Fig. S2).

Sampling Binding Configuration Space. A flexible docking program
developed by ourselves was used to construct the binding config-
uration space between HupA and TcAChE (details in SI Text). To
test the reliability of our computational methods for docking and
free energy calculation, we used the X-ray crystal structure of apo-
TcAChE [Protein Data Bank (PDB) ID: 1EA5] (30) rather than
the HupA–TcAChE complex (PDB ID: 1VOT) (26) as the start-
ing point for constructing the HupA–TcAChE BFEL. TcAChE
was first surrounded by a box with a dimension of 60 × 60 × 60 Å3,
which was further divided into 1,000 cubic lattices. To increase the
computational effectiveness, only those lattices around the bind-
ing pocket and possible binding and unbinding paths of TcAChE

Fig. 1. Configuration sampling for HupA–TcAChE Binding. (A) Stereoview of the active-site gorge of TcAChE and three putative ligand exit pathways indicated in
the previous study (32). (B) Latticing TcAChE for sampling the binding configuration space. Sticks represent the possible ligand-binding tunnels addressed by using
the Voronoi mesh-basedMOLE algorithm (33). Orange sticks indicate the direction of themain gorge for ligand binding and unbinding, green sticks stand for the
binding and unbinding tunnels connecting the side door, and the red stick denotes a novel tunnel thatwas not observed in the previous research. (C) Latticemodel
around the possible binding pathways. (D) Representative ligand configurations sampled in a cubic lattice described by the binding conformations (Left) and the
centers of mass (Right) of HupA. (E) The entire binding configuration space represented by the centers of mass of the binding conformations of HupA.
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were selected for binding configuration sampling. Themain active-
site gorge of TcAChE is about 20 Å deep and consists of two
separated ligand-binding sites, the acylation (or active) site and the
peripheral anionic site (31) (Fig. 1A). The possible existence of
a back door and a side door of AChE increases the complexity of
ligand binding to this protein (32) (Fig. 1A). We used the MOLE
program (an explorer of molecular channels) (33) to locate and
characterize the possible binding or unbinding paths on the basis
of all of the available X-ray–determined crystal structures of
TcAChE (34) (details in SI Text). MOLE is a Voronoi mesh-based
explorer that can effectively probe possible channels, pores, and
tunnels in a protein for ligands entering into or leaving out a re-
ceptor (http://mole.chemi.muni.cz/). For TcAChE, MOLE did not
address the path connecting the back door, but captured the main
gorge, the path to the side door, and a novel path perpendicular to
the main gorge (Fig. 1B). On the basis of the MOLE analysis, we
constructed a lattice model for binding configuration sampling
(Fig. 1C).
After setting up the lattice model, the HupA–TcAChE binding

configuration space was constructed by docking the HupA mole-
cule into the lattices. A multiobjective optimization algorithm de-
veloped on the basis of nonsorting genetic algorithm II (NSGAII)
(35) was used to optimize the binding poses of HupA and the
corresponding conformations of the flexible residues aroundHupA
(details in SI Text). The four energy terms (ΔEvdw,ΔEes,ΔGgb, and
ΔGsa) in Eq. 1 were adopted as objective functions for the multi-
objective optimizations. The docking simulation produced totally
127,371 binding configurations. Fig. 1D shows the 3D distributions
of the sampled binding configurations in one typical lattice. The
distributions of all sampled binding configurations in the whole
configuration space are shown in Fig. 1E, which indicates that there
are no continuous points along the novel path, suggesting that
HupA may hardly enter into or leave this path due to its narrow
space. Although there are points around the side door, the distri-
bution from the active site to the side door is not continuous, in-
dicating that HupA also could not reach to the active site through
this tunnel. The binding configurations contribute continuously
along themain gorge, suggesting that themain gorge is an exclusive
pathway for HupA entering and leaving.

HupA–TcAChE BFEL. The detailed procedure for BFEL construction
is described in SI Text. Binding free energy of each of the 127,371
sampled HupA–TcAChE binding configuration was calculated
using Eq. 1. Based on the structural and energetic information
of the sampled binding configurations, a BFEL surface was

constructed by using the Gridfit algorithm (36) and the nearest-
neighbor algorithm encoded in Matlab (37). During the BFEL
construction, two parameters were selected as the reaction coor-
dinates; one is the distance between the center of mass of HupA at
an instantaneous configuration and that of HupA at the active site,
and the other is the minimized root mean SD (RMSD) between
the instantaneous conformation of HupA and that at the active
site. The constructed 3D surface of the BFEL and its projection on
the reaction coordinate plane are also shown in Fig. 2.
In general, the BFEL is separated into two regions by a high and

long energy barrier (like a mountain chain); one side of the energy
barrier faces an area with various “hills” and “canyons” with dif-
ferent heights or depths, and the other side of the energy barrier
looks like a cliff (Fig. 2A). The physiognomy of the “cliff”-faced
area reflects the interaction characteristics of HupA with the ac-
tive site and that of the hills area characterizes interactions of
HupA with the peripheral anionic site and fluctuation of HupA in
the bulk solvent. The 2D projection of BFEL on the reaction co-
ordinate plane could clearly demonstrate the energetic properties
of the binding and unbinding processes of HupA to TcAChE (Fig.
2B; details in Discussion).

Characterization of Binding Pathway for HupA to TcAChE. To address
the ligand–receptor binding pathway, we developed an algorithm
that may search out the lowest-energy binding pathway from the
BFEL (Fig. S3A; details in SI Text). The most possible pathways of
HupA binding to TcAChE are shown in Fig. 2B, and the corre-
sponding binding free energy profile along this pathway is shown in
Fig. 3. Along the binding pathway, there are three low-energy wells
corresponding to three metastable states (B0–B2), one stable state
(B3), and two energy peaks related to two transition states (P1 and
P2). The snapshot of B3 shows the structural binding state of
HupA arriving at the active site. Energetically, B3 is the globally
lowest-energy state in the overall BFEL (Fig. 3). The docked
binding configuration of HupA–TcAChE in the B3 state is ex-
tremely close to the X-ray structure of the HupA–TcAChE com-
plex (26); the RMSDs are 0.588 and 0.775 Å for HupA and the
flexible residues of TcAChE, respectively (Fig. S3B). This indi-
cates the reliability of our computational method.
Now we discuss the binding process of HupA from the bulk

solvent to the active site (B3). Structural snapshots of the meta-
stable states and transition states in the binding pathway were also
isolated from the sampled binding configurations on the basis of
their location at the binding configuration space (Fig. 4 and Fig.
S4). It is interesting that HupA may enter into the active gorge in

Fig. 2. (A) Three-dimensional representation of the constructed binding free energy landscape (BFEL) for the HupA–TcAChE binding process. (B) Two-
dimensional representation of the binding free energy landscape between HupA and TcAChE. The red line is the lowest-energy binding pathway of HupA
binding to TcAChE.
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two orientations, the carbonyl group stretching into the gorge first
and the ethylidene methyl group stepping into the gorge first,
thereby producing two equi-energy entering trajectories, designed
as path I and path II, respectively (Fig. S5). HupA could arrive at
the active site of TcAChE through path I (Fig. 4). Nevertheless,
HupA could arrive at the bottom of the peripheral anionic site but
could not move farther to reach the active site through path II
(Figs. S4 and S5). Therefore, there are two equi-energy binding
configurations for B1, P1, and B2, but only one binding configu-
ration for P2 and B3 (Fig. 4 and Fig. S4). Of note, the role of
residues in the peripheral site of human AChE (hAChE) in po-
sitioning the ligand in a proper orientation before it enters into the
active site was also addressed by Branduardi et al. (21) in their
metadynamics simulation on the penetration of tetramethy-
lammonium (TMA) into the hAChE gorge. Interestingly, this
study revealed that site B1 is also a metastable basin for TMA.
Here, only path I is discussed in more detail and the structural

information of path II is shown in Fig. S4. For path I, the snapshot
of B0 indicates that, at this state, HupA interacts with the solvent
molecules and may translate and rotate freely, adopting appro-
priate orientations to enter into the active gorge ofTcAChE (Fig. 4
and Fig. S4). After crossing a low-energy barrier, HupA arrives at
the first metastable state B1, binding to the entrance of the active
gorge of TcAChE with a binding free energy of about −27.2 kJ/
mol. B1 is stabilized mainly by the hydrophobic interactions be-
tween HupA and three hydrophobic residues (W279, Y334, and
F330) and a hydrogen bond between the amino group of HupA
and the hydroxyl group of Y70. Moving farther and crossing
a relatively high-energy barrier of about 16.9 kJ/mol (P1), HupA
reaches the second metastable state B2. At the transition state P1,
the side chains of F330 and Y121 directly obstruct HupA to move
farther, and the extrusion from HupA motion twists the con-
formations of the side chains of Y334 and W279. These factors
result in the energy barrier for HupA in between B1 and B2. In the
snapshot of P1, weak hydrophobic interactions betweenHupA and
two hydrophobic residues (F290 and F331) and a hydrogen bond of
the amino group of HupA to hydroxyl of Y121 have been observed.
By pushing the side chains of F330 and Y121 forward, HupA arrives
at the second metastable state B2, which is stabilized by several
interactions between HupA and TcAChE, including a hydrogen
bond between the carboxyl group of HupA and the imidazole ring of
H440; a π-π stacking between the pyridine ring ofHupAand the side
chain of F330; and hydrophobic interactions of HupA with F290,
F331, and F334. At this stage, the side chains of W279 and Y334
recovered to their stable conformations. Before entering into the
active site, HupA has to travel over the highest-energy barrier of
the second transition state P2 (about 35.5 kJ/mol) by overcoming the
strong steric hindrances from N85, Y70, D72, Y121,F330, Y334,
H440, and W84. At state B3, HupA is stabilized by several kinds of
strong interactions formed between the ligand and protein.

Prediction vs. Experiment for Binding Affinity and Kinetic Parameters.
Mapping the binding process onto a simple two-state model for
the reaction of HupA with TcAChE, we can calculate ΔGo

binding,
ΔG≠

on, and ΔG≠
off values for HupA to TcAChE based on the

energetic profile (Fig. 3). The binding free energy and kinetic
data were estimated as ΔGo

binding�cal = −37:2± 3:60 kJ/mol,
ΔG≠

on�cal = 50:4± 1:45 kJ/mol, and ΔG≠
off�cal = 87:6± 3:37 kJ/

mol. The predicted data of binding free energy are in excellent
agreement with the reported experimental data, −38.6 kJ/mol at
25 °C (25) and −38.2 kJ/mol at 22 °C (38). However, no kinetic
data have been reported for HupA–TcAChE binding. To verify
the accuracy of our prediction, we determined both the thermo-
dynamic and the kinetic parameters for HupA–TcAChE binding
by using surface plasmon resonance (SPR) technology (details in
SI Text). To obtain the experimental activation free energies for
association and dissociation processes, kon and koff values at five
different temperatures in the 10–30 °C range were determined by
using SPR technology (Table S2 and Fig. S6A), and the values
of ΔG≠

on�exp and ΔG≠
off�exp were obtained by fitting the linear

form of Eyring’s equation (Fig. S6B). Surprisingly, both the de-
termined binding free energy and activation free energies are
extremely close to our predicted values:ΔGo

binding�exp =−38.0 kJ/mol,
ΔG≠

on�exp = 48.0 kJ/mol, and ΔG≠
off�exp = 86.0 kJ/mol (Fig. S6 B

and C). The predicted values of binding and activation free en-
ergies deviate from the experimental values by 0.8, 2.4, and 1.6 kJ/
mol, respectively. This accurate prediction for ligand–receptor
binding kinetics again demonstrates the reliability of our
computational method.

Discussion
Both the current experimental and computational approaches for
drug discovery are binding affinity emphasized (1). Developing
a computational method to predict binding kinetic parameters is
urgently needed for quantitative drug design. To this end, we have
extended the ideas of energy landscape theory for protein folding
and function to drug design and developed a computational method
to construct a BFEL for a ligand binding to its target protein. Thus,
both binding affinity and kinetic parameters can be estimated.
The reliability and practicability of our method have been val-

idated by simulation and computation of the HupA–TcAChE
binding process. Our method might construct a reasonable BFEL,
containing useful information for deeply understanding the action
mechanism of HupA (Figs. 3 and 4). The BFEL not only ad-
dressed the possible stable, metastable, and transition states for
HupA interacting with TcAChE but also accurately predicted
thermodynamic and kinetic data for HupA binding (Fig. 3 and
Fig. S3B). Of note, the computational method is also applied to
simulate the binding even for E2020, a marketed drug for the
treatment of Alzheimer’s disease, to TcAChE. The computa-
tional data of both binding affinity and kinetics are in good
agreement with the SPR-determined results. This result further
strengthens the reliability of our computational method.
During BFEL construction, the binding free energy for each

ligand–receptor binding configuration was estimated by an improved
MM-GBSA method (details in SI Text). Therefore, our method
could improve the accuracy of binding free energy for ligand–
receptor interactions. With sufficient sampling of ligand–receptor
binding configurations, our method can construct a complete and
precise binding free energy landscape, which includes the detailed
information about the ligand–receptor binding process. Different
from previous attempts for construction of BFEL (23, 24, 39, 40),
points assigned onto the landscape surface are standard binding free
energies rather than values relative to binding free energies that are
derived from binding configuration clustering and probability cal-
culation. In addition, the computational expense of our method is
relatively cheap. Accordingly, it is applicable in studying ligand–
receptor binding processes and of general interest in biomedical and
pharmaceutical research.

Fig. 3. Binding free energy profile corresponding to the possible binding
pathway in Fig. 2B. The blue curve represents the binding free energy profile
along the binding pathway and the pink shadow represents the predictive
error of the profile.
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As mentioned in the introductory section, drug–target binding
kinetic parameters, especially residence time (1/koff) or dissocia-
tive half-life (t1/2 = 0.693/koff), have become an important index in
discovering better- or best-in-class drugs (4). However, all existing
computational drug design strategies and approaches are de-
veloped on the basis of the idea of binding affinity; therefore, there
is an urgent need to develop binding kinetics-based approaches for
drug design. The accurate prediction for HupA–TcAChE binding
implies that our method could be used in designing compounds by
using both the binding affinity and the kinetic parameters as in-
dexes. The strategy is as follows: (i) Establish a BFEL for an
existing drug (active compound) binding to a target of interest. If
the target is totally new, one could discover active compounds by
using the traditional drug design or screening approaches. (ii)
From the BEEL, figure out the binding pathway and isolate the
structural snapshots of the possible metastable, transition, and
binding states to illustrate the binding mechanism of ligand to
protein. (iii) Design or virtually screen compounds targeting both

binding site (e.g., B3 in Fig. 4) and transition site (e.g., P2 in Fig. 4)
and evaluate the binding free energies to these two sites for each
compound, designated as ΔGAS

binding and ΔGTS
binding, respectively. At

the same time calculate the solvation energy of the compound,
ΔGBS

binding. Thus, three parameters can be obtained for each com-
pound: binding free energy ΔGo

binding =ΔGAS
binding −ΔGBS

binding, ac-
tivation free energy of the association process
ΔG≠

on =ΔGTS
binding −ΔGBS

binding, and ΔG≠
off =ΔGTS

binding −ΔGAS
binding.

(iv) Select compounds with small values of ΔGo
binding but large

values of ΔG≠
off for further experimental assay.

Materials and Methods
System Preparation. The preparation processes of the structural models for
protein, inhibitors, and their complexes are provided in SI Text, Table S1, and
Fig. S2.

Enzyme and Chemical Samples. TcAChE was kindly offered by Joel L. Sussman
and Israel Silman at the Weizmann Institute of Science, Rehovot, Israel. The

Fig. 4. Structural features along themost possible binding pathway of HupA entering the gorge of TcAChE. (Lower Right) The binding pathway of HupA to TcAChE
corresponding to the binding free energy profile shown in Fig. 2B. Green stick reflects the lowest-binding free energy pathwayportrayed by the centers ofmass of the
instantaneous configurations of HupA. Circles highlight the (meta)stable states (red) and transition states (blue). Smaller panes (Upper and Left) represent the in-
teractionmodels for themetastable, stable, and transition states indicated in the binding pathway. Red dashed lines in structuralmodels indicate the hydrogenbonds.
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chemical sample of HupA was kindly provided by Dayuan Zhu at the
Shanghai Institute of Materia Medica, Chinese Academy of Sciences.

SPR Determination. SPR measurements were performed on a BIAcore T200
instrument (BIAcore GE Healthcare). Details on the experiment procedure
and statistical treatment of experimental data are provided in SI Text.
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