50 research outputs found

    Knowledge Graphs Evolution and Preservation -- A Technical Report from ISWS 2019

    Get PDF
    One of the grand challenges discussed during the Dagstuhl Seminar "Knowledge Graphs: New Directions for Knowledge Representation on the Semantic Web" and described in its report is that of a: "Public FAIR Knowledge Graph of Everything: We increasingly see the creation of knowledge graphs that capture information about the entirety of a class of entities. [...] This grand challenge extends this further by asking if we can create a knowledge graph of "everything" ranging from common sense concepts to location based entities. This knowledge graph should be "open to the public" in a FAIR manner democratizing this mass amount of knowledge." Although linked open data (LOD) is one knowledge graph, it is the closest realisation (and probably the only one) to a public FAIR Knowledge Graph (KG) of everything. Surely, LOD provides a unique testbed for experimenting and evaluating research hypotheses on open and FAIR KG. One of the most neglected FAIR issues about KGs is their ongoing evolution and long term preservation. We want to investigate this problem, that is to understand what preserving and supporting the evolution of KGs means and how these problems can be addressed. Clearly, the problem can be approached from different perspectives and may require the development of different approaches, including new theories, ontologies, metrics, strategies, procedures, etc. This document reports a collaborative effort performed by 9 teams of students, each guided by a senior researcher as their mentor, attending the International Semantic Web Research School (ISWS 2019). Each team provides a different perspective to the problem of knowledge graph evolution substantiated by a set of research questions as the main subject of their investigation. In addition, they provide their working definition for KG preservation and evolution

    Genetic, Phenotypic, and Interferon Biomarker Status in ADAR1-Related Neurological Disease

    Get PDF
    We investigated the genetic, phenotypic, and interferon status of 46 patients from 37 families with neurological disease due to mutations in ADAR1. The clinicoradiological phenotype encompassed a spectrum of Aicardi–Goutières syndrome, isolated bilateral striatal necrosis, spastic paraparesis with normal neuroimaging, a progressive spastic dystonic motor disorder, and adult-onset psychological difficulties with intracranial calcification. Homozygous missense mutations were recorded in five families. We observed a p.Pro193Ala variant in the heterozygous state in 22 of 23 families with compound heterozygous mutations. We also ascertained 11 cases from nine families with a p.Gly1007Arg dominant-negative mutation, which occurred de novo in four patients, and was inherited in three families in association with marked phenotypic variability. In 50 of 52 samples from 34 patients, we identified a marked upregulation of type I interferon-stimulated gene transcripts in peripheral blood, with a median interferon score of 16.99 (interquartile range [IQR]: 10.64–25.71) compared with controls (median: 0.93, IQR: 0.57–1.30). Thus, mutations in ADAR1 are associated with a variety of clinically distinct neurological phenotypes presenting from early infancy to adulthood, inherited either as an autosomal recessive or dominant trait. Testing for an interferon signature in blood represents a useful biomarker in this context

    What do you mean, ‘megafire’?

    Full text link
    Background: ‘Megafire’ is an emerging concept commonly used to describe fires that are extreme in terms of size, behaviour, and/or impacts, but the term’s meaning remains ambiguous. Approach: We sought to resolve ambiguity surrounding the meaning of ‘megafire’ by conducting a structured review of the use and definition of the term in several languages in the peer-reviewed scientific literature. We collated definitions and descriptions of megafire and identified criteria frequently invoked to define megafire. We recorded the size and location of megafires and mapped them to reveal global variation in the size of fires described as megafires. Results: We identified 109 studies that define the term ‘megafire’ or identify a megafire, with the term first appearing in the peer-reviewed literature in 2005. Seventy-one (~65%) of these studies attempted to describe or define the term. There was considerable variability in the criteria used to define megafire, although definitions of megafire based on fire size were most common. Megafire size thresholds varied geographically from > 100–100,000 ha, with fires > 10,000 ha the most common size threshold (41%, 18/44 studies). Definitions of megafire were most common from studies led by authors from North America (52%, 37/71). We recorded 137 instances from 84 studies where fires were reported as megafires, the vast majority (94%, 129/137) of which exceed 10,000 ha in size. Megafires occurred in a range of biomes, but were most frequently described in forested biomes (112/137, 82%), and usually described single ignition fires (59% 81/137). Conclusion: As Earth’s climate and ecosystems change, it is important that scientists can communicate trends in the occurrence of larger and more extreme fires with clarity. To overcome ambiguity, we suggest a definition of megafire as fires > 10,000 ha arising from single or multiple related ignition events. We introduce two additional terms – gigafire (> 100,000 ha) and terafire (> 1,000,000 ha) – for fires of an even larger scale than megafires

    Fire Regime, Climate, and Vegetation in the Sierras de Córdoba, Argentina

    Get PDF
    Wildfires are a primary disturbance in the Sierras de Córdoba, Argentina, with approximately 2 152 000 ha burned between 1993 and 2012. However, little is known about the spatial and temporal patterns of fires and their relationship with climate and vegetation in this area. Such information is of great value for fire risk assessment and the development of strategies for fire management. Our main objective was to analyze fire activity in four sierran ranges, assessing which weather and climate conditions were mostly related to fire activity, and which land cover types were mostly burned. We used a fire database of mid-high spatial resolution and a land cover map derived from Landsat imagery. Fire regimes were different among the different sierran ranges. The Sierras Chicas range was the most affected by fires, with the largest number of fire events, burned area, and fire frequency. Although large fires represented 3% to 5% of fire events, they accounted for 60% to 86% of total burned area in different sierran ranges. Sierras of lower elevation had a winter seasonality of fires, while sierras of higher elevation had a winter-spring or spring fire seasonality. The number of fire events was positively correlated with preceding periods that were wetter than normal, while the burned area was mainly associated with midterm weather conditions. Fires occurred mainly in grasslands and shrublands, but the area of burned forests was important, too. Our results will be useful to determine the times and conditions in which fire risk is highest, and also to identify where preventive efforts should be focused.Los incendios constituyen uno de los principales disturbios en las Sierras de Córdoba, Argentina, acumulando aproximadamente 2152000 ha quemadas entre 1993 y 2012. Sin embargo, poco se conoce acerca de los patrones espaciales y temporales del fuego y su relación con el clima y la vegetación del lugar. Esta información es de gran valor para la evaluación del riesgo de incendios y para la implementación de estrategias de manejo del fuego. Nuestro objetivo fue analizar los incendios en cuatro sistemas serranos, evaluando las condiciones meteorológicas y climáticas que favorecen la ocurrencia de incendios y los tipos de vegetación que más se queman. Utilizamos una base de datos de incendios de resolución espacial media-alta y un mapa de cubiertas de suelo obtenido a partir de imágenes Landsat. Los regímenes de fuego fueron diferentes en los distintos sistemas serranos. Las Sierras Chicas fueron las más afectadas por el fuego, presentando el mayor número de eventos, área quemada y frecuencia de incendios. Los grandes incendios representaron entre 3% y 5% de los incendios, sin embargo,quemaron entre 60% y 86% del área quemada total en los diferentes sistemas serranos. Las sierras de menor altitud presentaron una estacionalidad de incendios invernal, mientras que las sierras de mayor altitud presentaron una estacionalidad inverno-primaveral o primaveral. El número de incendios se correlacionó positivamente con periodos precedentes de mayor humedad, mientras que el área quemada se correlacionó con las condiciones meteorológicas ocurrentes en el mediano plazo. Los incendios ocurrieron principalmente en áreas de pastizal y arbustal, aunque la superficie de bosques quemados fue importante también. Nuestros resultados serán de utilidad para determinar los momentos y condiciones de mayor riesgo de incendios y también para identificar las áreas donde se deben concentrar los esfuerzos preventivosInstituto de Recursos BiológicosFil: Argañaraz, Juan Pablo. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Cordoba. Instituto de Diversidad y Ecologia Animal; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; ArgentinaFil: Gavier Pizarro, Gregorio Ignacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos; ArgentinaFil: Zak, Marcelo Román. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Geografia; ArgentinaFil: Bellis, Laura Marisa. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Cordoba. Instituto de Diversidad y Ecologia Animal; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Diversidad y Ecología Animal; Argentin
    corecore