156 research outputs found

    Interactions of malnutrition and immune impairment, with specific reference to immunity against parasites

    Get PDF
    KEY POINTS: 1. Clinical malnutrition is a heterogenous group of disorders including macronutrient deficiencies leading to body cell mass depletion and micronutrient deficiencies, and these often coexist with infectious and inflammatory processes and environmental problems. 2. There is good evidence that specific micronutrients influence immunity, particularly zinc and vitamin A. Iron may have both beneficial and deleterious effects depending on circumstances. 3. There is surprisingly slender good evidence that immunity to parasites is dependent on macronutrient intake or body composition

    The Role of Zinc in the Modulation of Neuronal Proliferation and Apoptosis

    Get PDF
    Although a requirement of zinc (Zn) for normal brain development is well documented, the extent to which Zn can modulate neuronal proliferation and apoptosis is not clear. Thus, we investigated the role of Zn in the regulation of these two critical events. A low Zn availability leads to decreased cell viability in human neuroblastoma IMR-32 cells and primary cultures of rat cortical neurons. This occurs in part as a consequence of decreased cell proliferation and increased apoptotic cell death. In IMR-32 cells, Zn deficiency led to the inhibition of cell proliferation through the arrest of the cell cycle at the G0/G1 phase. Zn deficiency induced apoptosis in both proliferating and quiescent neuronal cells via the intrinsic apoptotic pathway. Reductions in cellular Zn triggered a translocation of the pro-apoptotic protein Bad to the mitochondria, cytochrome c release, and caspase-3 activation. Apoptosis is the resultant of the inhibition of the prosurvival extracellular-signal-regulated kinase, the inhibition of nuclear factor-kappa B, and associated decreased expression of antiapoptotic proteins, and to a direct activation of caspase-3. A deficit of Zn during critical developmental periods can have persistent effects on brain function secondary to a deregulation of neuronal proliferation and apoptosis

    Spinal cord stimulation in the treatment of refractory angina: systematic review and meta-analysis of randomised controlled trials

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this paper was undertake a systematic review and meta-analysis of the use of spinal cord stimulation (SCS) in the management of refractory angina.</p> <p>Methods</p> <p>We searched a number of electronic databases including Medline, Embase and Cochrane Library up to February 2008 to identify randomised controlled trials (RCTs) reporting exercise capacity, ischemic burden, functional class, quality of life, usage of anti-anginal medication, costs and adverse events including mortality. Results were reported both descriptively for each study and using random effects meta-analysis. Given the variety in outcomes reported, some outcome results were pooled as standardised mean differences (SMD) and reported in standard deviation units.</p> <p>Results</p> <p>Seven RCTs were identified in a total of 270 refractory angina patients. The outcomes of SCS were found to be similar when directly compared to coronary artery bypass grafting (CABG) and percutaneous myocardial laser revascularisation (PMR). Compared to a 'no stimulation' control, there was some evidence of improvement in all outcomes following SCS implantation with significant gains observed in pooled exercise capacity (SMD: 0.76, 0.07 to 1.46, <it>p </it>= 0.03) and health-related quality of life (SMD: 0.83, 95% CI: 0.32 to 1.34, <it>p </it>= 0.001). Trials were small and were judged to range considerably in their quality. The healthcare costs of SCS appeared to be lower than CABG at 2-years follow up.</p> <p>Conclusion</p> <p>SCS appears to be an effective and safe treatment option in the management of refractory angina patients and of similar efficacy and safety to PMR, a potential alternative treatment. Further high quality RCT and cost effectiveness evidence is needed before SCS can be accepted as a routine treatment for refractory angina.</p

    Extracorporeal Shock Wave Therapy Reverses Ischemia-Related Left Ventricular Dysfunction and Remodeling: Molecular-Cellular and Functional Assessment

    Get PDF
    An optimal treatment for patients with diffuse obstructive arterial disease unsuitable for catheter-based or surgical intervention is still pending. This study tested the hypothesis that extracorporeal shock wave (ECSW) therapy may be a therapeutic alternative under such clinical situation. Myocardial ischemia was induced in male mini-pigs through applying an ameroid constrictor over mid-left anterior descending artery (LAD). Twelve mini-pigs were equally randomized into group 1 (Constrictor over LAD only) and group 2 (Constrictor over LAD plus ECSW [800 impulses at 0.09 mJ/mm2] once 3 months after the procedure). Results showed that the parameters measured by echocardiography did not differ between two groups on days 0 and 90. However, echocardiography and left ventricular (LV) angiography showed higher LV ejection fraction and lower LV end-systolic dimension and volume in group 2 on day 180 (p<0.035). Besides, mRNA and protein expressions of CXCR4 and SDF-1α were increased in group 2 (p<0.04). Immunofluorescence staining also showed higher number of vWF-, CD31-, SDF-1α-, and CXCR4-positive cells in group 2 (all p<0.04). Moreover, immunohistochemical staining showed notably higher vessel density but lower mean fibrosis area, number of CD40-positive cells and apoptotic nuclei in group 2 (all p<0.045). Mitochondrial protein expression of oxidative stress was lower, whereas cytochrome-C was higher in group 2 (all p<0.03). Furthermore, mRNA expressions of MMP-9, Bax and caspase-3 were lower, whereas Bcl-2, eNOS, VEGF and PGC-1α were higher in group 2 (all p<0.01). In conclusion, ECSW therapy effectively reversed ischemia-elicited LV dysfunction and remodeling through enhancing angiogenesis and attenuating inflammation and oxidative stress

    Atg7-Mediated Autophagy Is Involved in the Neural Crest Cell Generation in Chick Embryo

    Get PDF
    Autophagy plays a very important role in numerous physiological and pathological events. However, it still remains unclear whether Atg7-induced autophagy is involved in the regulation of neural crest cell production. In this study, we found the co-location of Atg7 and Pax7+ neural crest cells in early chick embryo development. Upregulation of Atg7 with unilateral transfection of full-length Atg7 increased Pax7+ and HNK-1+ cephalic and trunk neural crest cell numbers compared to either Control-GFP transfection or opposite neural tubes, suggesting that Atg7 over-expression in neural tubes could enhance the production of neural crest cells. BMP4 in situ hybridization and p-Smad1/5/8 immunofluorescent staining demonstrated that upregulation of Atg7 in neural tubes suppressed the BMP4/Smad signaling, which is considered to promote the delamination of neural crest cells. Interestingly, upregulation of Atg7 in neural tubes could significantly accelerate cell progression into the S phase, implying that Atg7 modulates cell cycle progression. However, β-catenin expression was not significantly altered. Finally, we demonstrated that upregulation of the Atg7 gene could activate autophagy as did Atg8. We have also observed that similar phenotypes, such as more HNK-1+ neural crest cells in the unilateral Atg8 transfection side of neural tubes, and the transfection with full-length Atg8-GFP certainly promote the numbers of BrdU+ neural crest cells in comparison to the GFP control. Taken together, we reveal that Atg7-induced autophagy is involved in regulating the production of neural crest cells in early chick embryos through the modification of the cell cycle

    Long term impact of systemic bacterial infection on the cerebral vasculature and microglia

    Get PDF
    Background: Systemic infection leads to generation of inflammatory mediators that result in metabolic and behavioural changes. Repeated or chronic systemic inflammation leads to a state of innate immune tolerance: a protective mechanism against over-activity of the immune system. In this study we investigated the immune adaptation of microglia and brain vascular endothelial cells in response to systemic inflammation or bacterial infection. Methods: Mice were given repeated doses of lipopolysaccharide (LPS) or a single injection of live Salmonella typhimurium. Inflammatory cytokines were measured in serum, spleen and brain, and microglial phenotype studied by immunohistochemistry.mice were infected with Salmonella typhimurium and subsequently challenged with a focal unilateral, intracerebral injection of LPS. Results: Repeated systemic LPS challenges resulted in increased brain IL-1?, TNF? and IL-12 levels, despite attenuated systemic cytokine production. Each LPS challenge induced significant changes in burrowing behaviour. In contrast, brain IL-1? and IL-12 levels in Salmonella typhimurium infected mice increased over three weeks, with high interferon-? levels in the circulation. Behavioural changes were only observed during the acute phase of the infection. Microglia and cerebral vasculature display an activated phenotype, and focal intracerebral injection of LPS 4 weeks after infection results in an exaggerated local inflammatory response when compared to non-infected mice. Conclusions: These studies reveal that the innate immune cells in the brain do not become tolerant to systemic infection, but are primed instead. This may lead to prolonged and damaging cytokine production that may have aprofound effect on the onset and/ or progression of pre-existing neurodegenerative disease.Humans and animals are regularly exposed to bacterial and viral pathogens that can have a considerable impact on our day-to-day living [1]. Upon infection, a set of immune, physiological, metabolic, and behavioural responses is initiated, representing a highly organized strategy of the organism to fight infection. Pro-inflammatory mediators generated in peripheral tissue communicate with the brain to modify behaviour [2], which aids our ability to fight and eliminate the pathogen. The communication pathways from the site of inflammation to the brain have been investigated in animal models and systemic challenge with lipopolysaccharide (LPS) or double stranded RNA (poly I:C) have been widely used to mimic aspects of bacterial and viral infection respectively [3, 4]. These studies have provided evidence that systemically generated inflammatory mediators signal to the brain via both neural and humoral routes, the latter signalling via the circumventricular organs or across the blood-brain barrier (BBB). Signalling into the brain via these routes evokes a response in the perivascular macrophages (PVMs) and microglia, which in turn synthesise diverse inflammatory mediators including cytokines, prostaglandins and nitric oxide [2, 5, 6]. Immune-to-brain communication also occurs in humans who show changes in mood and cognition following systemic inflammation or infection, which are associated with changes in activity in particular regions of the CNS [7-9]. While these changes are part of our normal homeostasis, it is increasingly evident that systemic inflammation has a detrimental effect in animals and also humans, that suffer from chronic neurodegeneration [10, 11]. We, and others, have shown that microglia become primed by on-going neuropathology in the brain, which increases their response towards subsequent inflammatory stimuli, including systemic inflammation [12, 13] Similar findings have been made in aged rodents [14, 15], where it has been shown that there is an exaggerated behavioural and innate immune response in the brainto systemic bacterial and viral infections, but the molecular mechanisms underlying the microglial priming under these conditions is far from understood.Humans and animals are rarely exposed to a single acute systemic inflammatory event: they rather encounter infectious pathogens that replicate in vivo or are exposed to low concentrations of LPS over a prolonged period of time. There is limited information on the impact of non-neurotrophic bacterial infections on the CNS and whether prolonged systemic inflammation will give rise to either a hyper-(priming) or hypo-(tolerance) innate immune response in the brain in response to a subsequent inflammatory stimulus.In this study we measured the levels of cytokines in the serum, spleen and brain as well as assessing sickness behaviour following a systemic bacterial infection using attenuated Salmonella typhimurium SL3261: we compared the effect to that of repeated LPS injections. We show that Salmonella typhimurium caused acute, transient behavioural changes and a robust peripheral immune response that peaks at day 7. Systemic inflammation resulted in a delayed increase in cytokine production in the brain and priming of microglia, which persisted up to four weeks post infection. These effects were not mimicked by repeated LPS challenges. It is well recognised that systemic bacterial and viral infections are significant contributors to morbidity in the elderly [16], and it has been suggested that primed microglia play a role in the increased clinical symptoms seen in patients with Alzheimer’s disease who have systemic inflammation or infections [11, 17]. We show here that systemic infection leads to prolonged cytokine synthesis in the brain and also priming of brain innate immune cells to a subsequent focal inflammatory challenge in the brain parenchyma

    Gene regulatory network reveals oxidative stress as the underlying molecular mechanism of type 2 diabetes and hypertension

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prevalence of diabetes is increasing worldwide. It has been long known that increased rates of inflammatory diseases, such as obesity (OBS), hypertension (HT) and cardiovascular diseases (CVD) are highly associated with type 2 diabetes (T2D). T2D and/or OBS can develop independently, due to genetic, behavioral or lifestyle-related variables but both lead to oxidative stress generation. The underlying mechanisms by which theses complications arise and manifest together remain poorly understood. Protein-protein interactions regulate nearly every living process. Availability of high-throughput genomic data has enabled unprecedented views of gene and protein co-expression, co-regulations and interactions in cellular systems.</p> <p>Methods</p> <p>The present work, applied a systems biology approach to develop gene interaction network models, comprised of high throughput genomic and PPI data for T2D. The genes differentially regulated through T2D were 'mined' and their 'wirings' were studied to get a more complete understanding of the overall gene network topology and their role in disease progression.</p> <p>Results</p> <p>By analyzing the genes related to T2D, HT and OBS, a highly regulated gene-disease integrated network model has been developed that provides useful functional linkages among groups of genes and thus addressing how different inflammatory diseases are connected and propagated at genetic level. Based on the investigations around the 'hubs' that provided more meaningful insights about the cross-talk within gene-disease networks in terms of disease phenotype association with oxidative stress and inflammation, a hypothetical co-regulation disease mechanism model been proposed. The results from this study revealed that the oxidative stress mediated regulation cascade is the common mechanistic link among the pathogenesis of T2D, HT and other inflammatory diseases such as OBS.</p> <p>Conclusion</p> <p>The findings provide a novel comprehensive approach for understanding the pathogenesis of various co-associated chronic inflammatory diseases by combining the power of pathway analysis with gene regulatory network evaluation.</p

    Municipal mortality due to thyroid cancer in Spain

    Get PDF
    BACKGROUND: Thyroid cancer is a tumor with a low but growing incidence in Spain. This study sought to depict its spatial municipal mortality pattern, using the classic model proposed by Besag, York and Mollié. METHODS: It was possible to compile and ascertain the posterior distribution of relative risk on the basis of a single Bayesian spatial model covering all of Spain's 8077 municipal areas. Maps were plotted depicting standardized mortality ratios, smoothed relative risk (RR) estimates, and the posterior probability that RR > 1. RESULTS: From 1989 to 1998 a total of 2,538 thyroid cancer deaths were registered in 1,041 municipalities. The highest relative risks were mostly situated in the Canary Islands, the province of Lugo, the east of La Coruña (Corunna) and western areas of Asturias and Orense. CONCLUSION: The observed mortality pattern coincides with areas in Spain where goiter has been declared endemic. The higher frequency in these same areas of undifferentiated, more aggressive carcinomas could be reflected in the mortality figures. Other unknown genetic or environmental factors could also play a role in the etiology of this tumor

    Echocardiography practice, training and accreditation in the intensive care: document for the World Interactive Network Focused on Critical Ultrasound (WINFOCUS)

    Get PDF
    Echocardiography is increasingly used in the management of the critically ill patient as a non-invasive diagnostic and monitoring tool. Whilst in few countries specialized national training schemes for intensive care unit (ICU) echocardiography have been developed, specific guidelines for ICU physicians wishing to incorporate echocardiography into their clinical practice are lacking. Further, existing echocardiography accreditation does not reflect the requirements of the ICU practitioner. The WINFOCUS (World Interactive Network Focused On Critical UltraSound) ECHO-ICU Group drew up a document aimed at providing guidance to individual physicians, trainers and the relevant societies of the requirements for the development of skills in echocardiography in the ICU setting. The document is based on recommendations published by the Royal College of Radiologists, British Society of Echocardiography, European Association of Echocardiography and American Society of Echocardiography, together with international input from established practitioners of ICU echocardiography. The recommendations contained in this document are concerned with theoretical basis of ultrasonography, the practical aspects of building an ICU-based echocardiography service as well as the key components of standard adult TTE and TEE studies to be performed on the ICU. Specific issues regarding echocardiography in different ICU clinical scenarios are then described
    corecore