143 research outputs found

    Palmitoylation of human proteinase-activated receptor-2 differentially regulates receptor-triggered ERK1/2 activation, calcium signalling and endocytosis

    Get PDF
    hPAR2 (human proteinase-activated receptor-2) is a member of the novel family of proteolytically activated GPCRs (G-protein-coupled receptors) termed PARs (proteinase-activated receptors). Previous pharmacological studies have found that activation of hPAR2 by mast cell tryptase can be regulated by receptor N-terminal glycosylation. In order to elucidate other post-translational modifications of hPAR2 that can regulate function, we have explored the functional role of the intracellular cysteine residue Cys361. We have demonstrated, using autoradiography, that Cys361 is the primary palmitoylation site of hPAR2. The hPAR2C361A mutant cell line displayed greater cell-surface expression compared with the wt (wild-type)-hPAR2-expressing cell line. hPAR2C361A also showed a decreased sensitivity and efficacy (intracellular calcium signalling) towards both trypsin and SLIGKV. In stark contrast, hPAR2C361A triggered greater and more prolonged ERK (extracellular-signal-regulated kinase) phosphorylation compared with that of wt-hPAR2 possibly through Gi, since pertussis toxin inhibited the ability of this receptor to activate ERK. Finally, flow cytometry was utilized to assess the rate and extent of receptor internalization following agonist challenge. hPAR2C361A displayed faster internalization kinetics following trypsin activation compared with wt-hPAR2, whereas SLIGKV had a negligible effect on internalization for either receptor. In conclusion, palmitoylation plays an important role in the regulation of PAR2 expression, agonist sensitivity, desensitization and internalization

    A role for the arginine methylation of Rad9 in checkpoint control and cellular sensitivity to DNA damage

    Get PDF
    The genome stability is maintained by coordinated action of DNA repairs and checkpoints, which delay progression through the cell cycle in response to DNA damage. Rad9 is conserved from yeast to human and functions in cell cycle checkpoint controls. Here, a regulatory mechanism for Rad9 function is reported. In this study Rad9 has been found to interact with and be methylated by protein arginine methyltransferase 5 (PRMT5). Arginine methylation of Rad9 plays a critical role in S/M and G2/M cell cycle checkpoints. The activation of the Rad9 downstream checkpoint effector Chk1 is impaired in cells only expressing a mutant Rad9 that cannot be methylated. Additionally, Rad9 methylation is also required for cellular resistance to DNA damaging stresses. In summary, we uncovered that arginine methylation is important for regulation of Rad9 function, and thus is a major element for maintaining genome integrity

    Ligand-induced sequestering of branchpoint sequence allows conditional control of splicing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite tremendous progress in understanding the mechanisms of constitutive and alternative splicing, an important and widespread step along the gene expression pathway, our ability to deliberately regulate gene expression at this step remains rudimentary. The present study was performed to investigate whether a theophylline-dependent "splice switch" that sequesters the branchpoint sequence (BPS) within RNA-theophylline complex can regulate alternative splicing.</p> <p>Results</p> <p>We constructed a series of pre-mRNAs in which the BPS was inserted within theophylline aptamer. We show that theophylline-induced sequestering of BPS inhibits pre-mRNA splicing both in vitro and in vivo in a dose-dependent manner. Several lines of evidence suggest that theophylline-dependent inhibition of splicing is highly specific, and thermodynamic stability of RNA-theophylline complex as well as the location of BPS within this complex affects the efficiency of splicing inhibition. Finally, we have constructed an alternative splicing model pre-mRNA substrate in which theophylline caused exon skipping both in vitro and in vivo, suggesting that a small molecule-RNA interaction can modulate alternative splicing.</p> <p>Conclusion</p> <p>These findings provide the ability to control splicing pattern at will and should have important implications for basic, biotechnological, and biomedical research.</p

    The Importance of the Stem Cell Marker Prominin-1/CD133 in the Uptake of Transferrin and in Iron Metabolism in Human Colon Cancer Caco-2 Cells

    Get PDF
    As the pentaspan stem cell marker CD133 was shown to bind cholesterol and to localize in plasma membrane protrusions, we investigated a possible function for CD133 in endocytosis. Using the CD133 siRNA knockdown strategy and non-differentiated human colon cancer Caco-2 cells that constitutively over-expressed CD133, we provide for the first time direct evidence for a role of CD133 in the intracellular accumulation of fluorescently labeled extracellular compounds. Assessed using AC133 monoclonal antibody, CD133 knockdown was shown to improve Alexa488-transferrin (Tf) uptake in Caco-2 cells but had no impact on FITC-dextran or FITC-cholera-toxin. Absence of effect of the CD133 knockdown on Tf recycling established a role for CD133 in inhibiting Tf endocytosis rather than in stimulating Tf exocytosis. Use of previously identified inhibitors of known endocytic pathways and the positive impact of CD133 knockdown on cellular uptake of clathrin-endocytosed synthetic lipid nanocapsules supported that CD133 impact on endocytosis was primarily ascribed to the clathrin pathway. Also, cholesterol extraction with methyl-β-cyclodextrine up regulated Tf uptake at greater intensity in the CD133high situation than in the CD133low situation, thus suggesting a role for cholesterol in the inhibitory effect of CD133 on endocytosis. Interestingly, cell treatment with the AC133 antibody down regulated Tf uptake, thus demonstrating that direct extracellular binding to CD133 could affect endocytosis. Moreover, flow cytometry and confocal microscopy established that down regulation of CD133 improved the accessibility to the TfR from the extracellular space, providing a mechanism by which CD133 inhibited Tf uptake. As Tf is involved in supplying iron to the cell, effects of iron supplementation and deprivation on CD133/AC133 expression were investigated. Both demonstrated a dose-dependent down regulation here discussed to the light of transcriptional and post-transciptional effects. Taken together, these data extend our knowledge of the function of CD133 and underline the interest of further exploring the CD133-Tf-iron network

    M-CSF Signals through the MAPK/ERK Pathway via Sp1 to Induce VEGF Production and Induces Angiogenesis In Vivo

    Get PDF
    BACKGROUND: M-CSF recruits mononuclear phagocytes which regulate processes such as angiogenesis and metastases in tumors. VEGF is a potent activator of angiogenesis as it promotes endothelial cell proliferation and new blood vessel formation. Previously, we reported that in vitro M-CSF induces the expression of biologically-active VEGF from human monocytes. METHODOLOGY AND RESULTS: In this study, we demonstrate the molecular mechanism of M-CSF-induced VEGF production. Using a construct containing the VEGF promoter linked to a luciferase reporter, we found that a mutation reducing HIF binding to the VEGF promoter had no significant effect on luciferase production induced by M-CSF stimulation. Further analysis revealed that M-CSF induced VEGF through the MAPK/ERK signaling pathway via the transcription factor, Sp1. Thus, inhibition of either ERK or Sp1 suppressed M-CSF-induced VEGF at the mRNA and protein level. M-CSF also induced the nuclear localization of Sp1, which was blocked by ERK inhibition. Finally, mutating the Sp1 binding sites within the VEGF promoter or inhibiting ERK decreased VEGF promoter activity in M-CSF-treated human monocytes. To evaluate the biological significance of M-CSF induced VEGF production, we used an in vivo angiogenesis model to illustrate the ability of M-CSF to recruit mononuclear phagocytes, increase VEGF levels, and enhance angiogenesis. Importantly, the addition of a neutralizing VEGF antibody abolished M-CSF-induced blood vessel formation. CONCLUSION: These data delineate an ERK- and Sp1-dependent mechanism of M-CSF induced VEGF production and demonstrate for the first time the ability of M-CSF to induce angiogenesis via VEGF in vivo

    The hnRNP family: insights into their role in health and disease

    Get PDF
    Heterogeneous nuclear ribonucleoproteins (hnRNPs) represent a large family of RNA-binding proteins (RBPs) that contribute to multiple aspects of nucleic acid metabolism including alternative splicing, mRNA stabilization, and transcriptional and translational regulation. Many hnRNPs share general features, but differ in domain composition and functional properties. This review will discuss the current knowledge about the different hnRNP family members, focusing on their structural and functional divergence. Additionally, we will highlight their involvement in neurodegenerative diseases and cancer, and the potential to develop RNA-based therapies
    • …
    corecore