246 research outputs found
Histone deacetylase adaptation in single ventricle heart disease and a young animal model of right ventricular hypertrophy.
BackgroundHistone deacetylase (HDAC) inhibitors are promising therapeutics for various forms of cardiac diseases. The purpose of this study was to assess cardiac HDAC catalytic activity and expression in children with single ventricle (SV) heart disease of right ventricular morphology, as well as in a rodent model of right ventricular hypertrophy (RVH).MethodsHomogenates of right ventricle (RV) explants from non-failing controls and children born with a SV were assayed for HDAC catalytic activity and HDAC isoform expression. Postnatal 1-day-old rat pups were placed in hypoxic conditions, and echocardiographic analysis, gene expression, HDAC catalytic activity, and isoform expression studies of the RV were performed.ResultsClass I, IIa, and IIb HDAC catalytic activity and protein expression were elevated in the hearts of children born with a SV. Hypoxic neonatal rats demonstrated RVH, abnormal gene expression, elevated class I and class IIb HDAC catalytic activity, and protein expression in the RV compared with those in the control.ConclusionsThese data suggest that myocardial HDAC adaptations occur in the SV heart and could represent a novel therapeutic target. Although further characterization of the hypoxic neonatal rat is needed, this animal model may be suitable for preclinical investigations of pediatric RV disease and could serve as a useful model for future mechanistic studies
Islamic Monetary Economics: Insights from the Literature
This chapter reviews critical early literature of Islamic monetary economics. The prohibition of Riba has imposed challenges on Islamic economists to come up with the viable alternatives to achieve Islamic monetary policy goals. Our extensive review of theoretical and empirical literature indicates that equity based profit- and loss-sharing instruments have been proposed for conducting open market operations in an interest-free economy. Theoretically, the central bank can achieve desired goals by controlling money supply and profit-sharing ratios. The findings from empirical literature suggest that money demand tend to be more stable in an interest-free economy. Whether monetary transmission works through Islamic banking channel is controversial, but the literature is growing. These findings are not surprising as majority Muslim countries lack sustainable and equitable economic growth. Moreover, these countries suffer from higher inflation and unemployment with little or no monetary freedom due to fixed exchange rate regime, shallow financial markets and strict capital control
Protein-protein interactions in the RPS4/RRS1 immune receptor complex
Plant NLR (Nucleotide-binding domain and Leucine-rich Repeat) immune receptor proteins are encoded by Resistance (R) genes and confer specific resistance to pathogen races that carry the corresponding recognized effectors. Some NLR proteins function in pairs, forming receptor complexes for the perception of specific effectors. We show here that the Arabidopsis RPS4 and RRS1 NLR proteins are both required to make an authentic immune complex. Over-expression of RPS4 in tobacco or in Arabidopsis results in constitutive defense activation; this phenotype is suppressed in the presence of RRS1. RRS1 protein co-immunoprecipitates (co-IPs) with itself in the presence or absence of RPS4, but in contrast, RPS4 does not associate with itself in the absence of RRS1. In the presence of RRS1, RPS4 associates with defense signaling regulator EDS1 solely in the nucleus, in contrast to the extra-nuclear location found in the absence of RRS1. The AvrRps4 effector does not disrupt RPS4-EDS1 association in the presence of RRS1. In the absence of RRS1, AvrRps4 interacts with EDS1, forming nucleocytoplasmic aggregates, the formation of which is disturbed by the co-expression of PAD4 but not by SAG101. These data indicate that the study of an immune receptor protein complex in the absence of all components can result in misleading inferences, and reveals an NLR complex that dynamically interacts with the immune regulators EDS1/PAD4 or EDS1/SAG101, and with effectors, during the process by which effector recognition is converted to defense activation
ATR2Cala2 from Arabidopsis-infecting downy mildew requires 4 TIR-NLR immune receptors for full recognition
Arabidopsis Col-0 RPP2A and RPP2B confer recognition of Arabidopsis downy mildew (Hyaloperonospora arabidopsidis [Hpa]) isolate Cala2, but the identity of the recognized ATR2Cala2 effector was unknown.
To reveal ATR2Cala2, an F2 population was generated from a cross between Hpa-Cala2 and Hpa-Noks1. We identified ATR2Cala2 as a non-canonical RxLR-type effector that carries a signal peptide, a dEER motif, and WY domains but no RxLR motif. Recognition of ATR2Cala2 and its effector function were verified by biolistic bombardment, ectopic expression and Hpa infection.
ATR2Cala2 is recognized in accession Col-0 but not in Ler-0 in which RPP2A and RPP2B are absent. In ATR2Emoy2 and ATR2Noks1 alleles, a frameshift results in an early stop codon. RPP2A and RPP2B are essential for the recognition of ATR2Cala2. Stable and transient expression of ATR2Cala2 under 35S promoter in Arabidopsis and Nicotiana benthamiana enhances disease susceptibility.
Two additional Col-0 TIR-NLR (TNL) genes (RPP2C and RPP2D) adjacent to RPP2A and RPP2B are quantitatively required for full resistance to Hpa-Cala2. We compared RPP2 haplotypes in multiple Arabidopsis accessions and showed that all four genes are present in all ATR2Cala2-recognizing accessions
Distinct modes of derepression of an Arabidopsis immune receptor complex by two different bacterial effectors
Plant intracellular nucleotide-binding leucine-rich repeat (NLR) immune receptors often function in pairs to detect pathogen effectors and activate defense. The Arabidopsis RRS1-R–RPS4 NLR pair recognizes the bacterial effectors AvrRps4 and PopP2 via an integrated WRKY transcription factor domain in RRS1-R that mimics the effector’s authentic targets. How the complex activates defense upon effector recognition is unknown. Deletion of the WRKY domain results in an RRS1 allele that triggers constitutive RPS4-dependent defense activation, suggesting that in the absence of effector, the WRKY domain contributes to maintaining the complex in an inactive state. We show the WRKY domain interacts with the adjacent domain 4, and that the inactive state of RRS1 is maintained by WRKY–domain 4 interactions before ligand detection. AvrRps4 interaction with the WRKY domain disrupts WRKY–domain 4 association, thus derepressing the complex. PopP2-triggered activation is less easily explained by such disruption and involves the longer C-terminal extension of RRS1-R. Furthermore, some mutations in RPS4 and RRS1 compromise PopP2 but not AvrRps4 recognition, suggesting that AvrRps4 and PopP2 derepress the complex differently. Consistent with this, a “reversibly closed” conformation of RRS1-R, engineered in a method exploiting the high affinity of colicin E9 and Im9 domains, reversibly loses AvrRps4, but not PopP2 responsiveness. Following RRS1 derepression, interactions between domain 4 and the RPS4 C-terminal domain likely contribute to activation. Simultaneous relief of autoinhibition and activation may contribute to defense activation in many immune receptors
Crimean-Congo hemorrhagic fever: epidemiological trends and controversies in treatment
Crimean-Congo hemorrhagic fever (CCHF) virus has the widest geographic range of all tick-borne viruses and is endemic in more than 30 countries in Eurasia and Africa. Over the past decade, new foci have emerged or re-emerged in the Balkans and neighboring areas. Here we discuss the factors influencing CCHF incidence and focus on the main issue of the use of ribavirin for treating this infection. Given the dynamics of CCHF emergence in the past decade, development of new anti-viral drugs and a vaccine is urgently needed to treat and prevent this acute, life-threatening disease
Hypothalamic-pituitary-gonadal axis hormones and cortisol in both menstrual phases of women with chronic fatigue syndrome and effect of depressive mood on these hormones
BACKGROUND: Chronic fatigue syndrome (CFS) is a disease which defined as medically unexplained, disabling fatigue of 6 months or more duration and often accompanied by several of a long list of physical complaints. We aimed to investigate abnormalities of hypothalamic-pituitary-gonadal (HPG) axis hormones and cortisol concentrations in premenopausal women with CFS and find out effects of depression rate on these hormones. METHODS: We examined follicle stimulating hormone (FSH), luteinizing hormone (LH), estradiol, progesterone and cortisol concentrations in 43 premenopausal women (mean age: 32.86 ± 7.11) with CFS and compared matched 35 healthy controls (mean age: 31.14 ± 6.19). Patients were divided according to menstrual cycle phases (follicular and luteal) and compared with matched phase controls. Depression rate was assessed by Beck Depression Inventory (BDI), and patients with high BDI scores were compared to patients with low BDI scores. RESULTS: There were no significant differences in FSH, LH, estradiol and progesterone levels in both of menstrual phases of patients versus controls. Cortisol levels were significantly lower in patients compared to controls. There were no significant differences in all hormone levels in patients with high depression scores versus patients with low depression scores. CONCLUSION: In spite of high depression rate, low cortisol concentration and normal HPG axis hormones of both menstrual phases are detected in premenopausal women with CFS. There is no differentiation between patients with high and low depression rate in all hormone levels. Depression condition of CFS may be different from classical depression and evaluation of HPG and HPA axis should be performed for understanding of pathophysiology of CFS and planning of treatment
Predicting Hospital-Acquired Infections by Scoring System with Simple Parameters
BACKGROUND: Hospital-acquired infections (HAI) are associated with increased attributable morbidity, mortality, prolonged hospitalization, and economic costs. A simple, reliable prediction model for HAI has great clinical relevance. The objective of this study is to develop a scoring system to predict HAI that was derived from Logistic Regression (LR) and validated by Artificial Neural Networks (ANN) simultaneously. METHODOLOGY/PRINCIPAL FINDINGS: A total of 476 patients from all the 806 HAI inpatients were included for the study between 2004 and 2005. A sample of 1,376 non-HAI inpatients was randomly drawn from all the admitted patients in the same period of time as the control group. External validation of 2,500 patients was abstracted from another academic teaching center. Sixteen variables were extracted from the Electronic Health Records (EHR) and fed into ANN and LR models. With stepwise selection, the following seven variables were identified by LR models as statistically significant: Foley catheterization, central venous catheterization, arterial line, nasogastric tube, hemodialysis, stress ulcer prophylaxes and systemic glucocorticosteroids. Both ANN and LR models displayed excellent discrimination (area under the receiver operating characteristic curve [AUC]: 0.964 versus 0.969, p = 0.507) to identify infection in internal validation. During external validation, high AUC was obtained from both models (AUC: 0.850 versus 0.870, p = 0.447). The scoring system also performed extremely well in the internal (AUC: 0.965) and external (AUC: 0.871) validations. CONCLUSIONS: We developed a scoring system to predict HAI with simple parameters validated with ANN and LR models. Armed with this scoring system, infectious disease specialists can more efficiently identify patients at high risk for HAI during hospitalization. Further, using parameters either by observation of medical devices used or data obtained from EHR also provided good prediction outcome that can be utilized in different clinical settings
The relationship between educational level and bone mineral density in postmenopausal women
BACKGROUND: This study describes the influence of educational level on bone mineral density (BMD) and investigating the relationship between educational level and bone mineral density in postmenopausal women. METHODS: A total of 569 postmenopausal women, from 45 to 86 years of age (mean age of 60.43 ± 7.19 years) were included in this study. A standardized interview was used at the follow-up visit to obtain information on demographic, life-style, reproductive and menstrual histories such as age at menarche, age at menopause, number of pregnancies, number of abortions, duration of menopause, duration of fertility, and duration of lactation. Patients were separated into four groups according to the level of education, namely no education (Group 1 with 209 patients), elementary (Group 2 with 222 patients), high school (Group 3 with 79 patients), and university (Group 4 with 59 patients). RESULTS: The mean ages of groups were 59.75 ± 7.29, 61.42 ± 7.50, 60.23 ± 7.49, and 58.72 ± 7.46, respectively. Spine BMD was significant lower in Group 1 than that of other groups (p < 0.05). Trochanter and ward's triangle BMD were the highest in Group 4 and there was a significant difference between Group 1 and 4 (p < 0.05). The prevalence of osteoporosis showed an inverse relationship with level of education, ranging from 18.6% for the most educated to 34.4% for the no educated women (p < 0.05). Additionally, there was a significant correlation between educational level and spine BMD (r = 0.20, p < 0.01), trochanter BMD (r = 0.13, p < 0.01), and ward's BMD (r = 0.14, p < 0.01). CONCLUSIONS: The results of the study suggest that there is a significant correlation between educational level and BMD. Losses in BMD for women of lower educational level tend to be relatively high, and losses in spine and femur BMD showed a decrease with increasing educational level
Genomic organisation of the Mal d 1 gene cluster on linkage group 16 in apple
European populations exhibit progressive sensitisation to food allergens, and apples are one of the foods for which sensitisation is observed most frequently. Apple cultivars vary greatly in their allergenic characteristics, and a better understanding of the genetic basis of low allergenicity may therefore allow allergic individuals to increase their fruit intake. Mal d 1 is considered to be a major apple allergen, and this protein is encoded by the most complex allergen gene family. Not all Mal d 1 members are likely to be involved in allergenicity. Therefore, additional knowledge about the existence and characteristics of the different Mal d 1 genes is required. In the present study, we investigated the genomic organisation of the Mal d 1 gene cluster in linkage group 16 of apple through the sequencing of two bacterial artificial chromosome clones. The results provided new information on the composition of this family with respect to the number and orientation of functional and pseudogenes and their physical distances. The results were compared with the apple and peach genome sequences that have recently been made available. A broad analysis of the whole apple genome revealed the presence of new genes in this family, and a complete list of the observed Mal d 1 genes is supplied. Thus, this study provides an important contribution towards a better understanding of the genetics of the Mal d 1 family and establishes the basis for further research on allelic diversity among cultivars in relation to variation in allergenicity
- …
