106 research outputs found

    Causarum Investigatio and the Two Bell's Theorems of John Bell

    Full text link
    "Bell's theorem" can refer to two different theorems that John Bell proved, the first in 1964 and the second in 1976. His 1964 theorem is the incompatibility of quantum phenomena with the joint assumptions of Locality and Predetermination. His 1976 theorem is their incompatibility with the single property of Local Causality. This is contrary to Bell's own later assertions, that his 1964 theorem began with the assumption of Local Causality, even if not by that name. Although the two Bell's theorems are logically equivalent, their assumptions are not. Hence, the earlier and later theorems suggest quite different conclusions, embraced by operationalists and realists, respectively. The key issue is whether Locality or Local Causality is the appropriate notion emanating from Relativistic Causality, and this rests on one's basic notion of causation. For operationalists the appropriate notion is what is here called the Principle of Agent-Causation, while for realists it is Reichenbach's Principle of common cause. By breaking down the latter into even more basic Postulates, it is possible to obtain a version of Bell's theorem in which each camp could reject one assumption, happy that the remaining assumptions reflect its weltanschauung. Formulating Bell's theorem in terms of causation is fruitful not just for attempting to reconcile the two camps, but also for better describing the ontology of different quantum interpretations and for more deeply understanding the implications of Bell's marvellous work.Comment: 24 pages. Prepared for proceedings of the "Quantum [Un]speakables II" conference (Vienna, 2014), to be published by Springe

    What is Quantum? Unifying Its Micro-Physical and Structural Appearance

    Full text link
    We can recognize two modes in which 'quantum appears' in macro domains: (i) a 'micro-physical appearance', where quantum laws are assumed to be universal and they are transferred from the micro to the macro level if suitable 'quantum coherence' conditions (e.g., very low temperatures) are realized, (ii) a 'structural appearance', where no hypothesis is made on the validity of quantum laws at a micro level, while genuine quantum aspects are detected at a structural-modeling level. In this paper, we inquire into the connections between the two appearances. We put forward the explanatory hypothesis that, 'the appearance of quantum in both cases' is due to 'the existence of a specific form of organisation, which has the capacity to cope with random perturbations that would destroy this organisation when not coped with'. We analyse how 'organisation of matter', 'organisation of life', and 'organisation of culture', play this role each in their specific domain of application, point out the importance of evolution in this respect, and put forward how our analysis sheds new light on 'what quantum is'.Comment: 10 page

    Engineering of a calcium-ion binding site into the RC-LH1-PufX complex of Rhodobacter sphaeroides to enable ion-dependent spectral red-shifting

    Get PDF
    The reaction centre-light harvesting 1 (RC-LH1) complex of Thermochromatium (Tch.) tepidum has a unique calcium-ion binding site that enhances thermal stability and red-shifts the absorption of LH1 from 880 nm to 915 nm in the presence of calcium-ions. The LH1 antenna of mesophilic species of phototrophic bacteria such as Rhodobacter (Rba.) sphaeroides does not possess such properties. We have engineered calcium-ion binding into the LH1 antenna of Rba. sphaeroides by progressively modifying the native LH1 polypeptides with sequences from Tch. tepidum. We show that acquisition of the C-terminal domains from LH1 α and β of Tch. tepidum is sufficient to activate calcium-ion binding and the extent of red-shifting increases with the proportion of Tch. tepidum sequence incorporated. However, full exchange of the LH1 polypeptides with those of Tch. tepidum results in misassembled core complexes. Isolated α and β polypeptides from our most successful mutant were reconstituted in vitro with BChl a to form an LH1-type complex, which was stabilised 3-fold by calcium-ions. Additionally, carotenoid specificity was changed from spheroidene found in Rba. sphaeroides to spirilloxanthin found in Tch. tepidum, with the latter enhancing in vitro formation of LH1. These data show that the C-terminal LH1 α/β domains of Tch. tepidum behave autonomously, and are able to transmit calcium-ion induced conformational changes to BChls bound to the rest of a foreign antenna complex. Thus, elements of foreign antenna complexes, such as calcium-ion binding and blue/red switching of absorption, can be ported into Rhodobacter sphaeroides using careful design processes

    Nanocolloidal albumin-IRDye 800CW: a near-infrared fluorescent tracer with optimal retention in the sentinel lymph node

    Get PDF
    Purpose: At present, the only approved fluorescent tracer for clinical near-infrared fluorescence-guided sentinel node (SN) detection is indocyanine green (ICG), but the use of this tracer is limited due to its poor retention in the SN resulting in the detection of higher tier nodes. We describe the development and characterization of a next-generation fluorescent tracer, nanocolloidal albumin-IRDye 800CW that has optimal properties for clinical SN detection Methods: The fluorescent dye IRDye 800CW was covalently coupled to colloidal human serum albumin (HSA) particles present in the labelling kit Nanocoll in a manner compliant with current Good Manufacturing Practice. Characterization of nanocolloidal albumin-IRDye 800CW included determination of conjugation efficiency, purity, stability and particle size. Quantum yield was determined in serum and compared to that of ICG. For in vivo evaluation a lymphogenic metastatic tumour model in rabbits was used. Fluorescence imaging was performed directly after peritumoral injection of nanocolloidal albumin-IRDye 800CW or the reference ICG/HSA (i.e. ICG mixed with HSA), and was repeated after 24 h, after which fluorescent lymph nodes were excised. Results: Conjugation of IRDye 800CW to nanocolloidal albumin was always about 50% efficient and resulted in a stable and pure product without affecting the particle size of the nanocolloidal albumin. The quantum yield of nanocolloidal albumin-IRDye 800CW was similar to that of ICG. In vivo evaluation revealed noninvasive detection of the SN within 5 min of injection of either nanocolloidal albumin-IRDye 800CW or ICG/HSA. No decrease in the fluorescence signal from SN was observed 24 h after injection of the nanocolloidal albumin-IRDye 800CW, while a strong decrease or complete disappearance of the fluorescence signal was seen 24 h after injection of ICG/HSA. Fluorescence-guided SN biopsy was very easy. Conclusion: Nanocolloidal albumin-IRDye 800CW is a promising fluorescent tracer with optimal kinetic features for SN detection. © The Author(s) 2012

    A human immune dysregulation syndrome characterized by severe hyperinflammation with a homozygous nonsense Roquin-1 mutation

    Get PDF
    Hyperinflammatory syndromes are life-threatening disorders caused by overzealous immune cell activation and cytokine release, often resulting from defects in negative feedback mechanisms. In the quintessential hyperinflammatory syndrome familial hemophagocytic lymphohistiocytosis (HLH), inborn errors of cytotoxicity result in effector cell accumulation, immune dysregulation and, if untreated, tissue damage and death. Here, we describe a human case with a homozygous nonsense R688* RC3H1 mutation suffering from hyperinflammation, presenting as relapsing HLH. RC3H1 encodes Roquin-1, a posttranscriptional repressor of immune-regulatory proteins such as ICOS, OX40 and TNF. Comparing the R688* variant with the murine M199R variant reveals a phenotypic resemblance, both in immune cell activation, hypercytokinemia and disease development. Mechanistically, R688* Roquin-1 fails to localize to P-bodies and interact with the CCR4-NOT deadenylation complex, impeding mRNA decay and dysregulating cytokine production. The results from this unique case suggest that impaired Roquin-1 function provokes hyperinflammation by a failure to quench immune activation
    • …
    corecore