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Abstract

Main conclusion

Class  II  and  III  chitinases  belonging  to  different  glycoside
hydrolase  families  were  major  nectarins  in  Rhododendron
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irroratum  floral  nectar  which  showed  significant  chitinolytic
activity.

Previous  studies  have  demonstrated  antimicrobial  activity  in  plant
floral nectar, but the molecular basis for the mechanism is still poorly
understood. Two chitinases, class II (Rhchi2) and III (Rhchi3), were
characterized from alkaline Rhododendron irroratum  nectar by both
SDS-PAGE  and  mass  spectrometry.  Rhchi2  (27  kDa)  and  Rhchi3
(29 kDa) are glycoside hydrolases (family 19 and 18) with theoretical
pI of 8.19 and 7.04. The expression patterns of Rhchi2 and Rhchi3
were analyzed by semi-quantitative RT-PCR. Rhchi2 is expressed in
flowers  (corolla  nectar  pouches)  and  leaves  while  Rhchi3  is
expressed  in  flowers.  Chitinase  in  concentrated  protein  and  fresh
nectar samples was visualised by SDS-PAGE and chitinolytic activity
in  fresh  nectar  was  determined  spectrophotometrically  via  chitin-
azure.  Full  length  gene  sequences  were  cloned  with  Tail-PCR and
RACE. The amino acid sequence deduced from the coding region for
these  proteins  showed  high  identity  with  known  chitinases  and
predicted  to  be  located  in  extracellular  space.  Fresh  R.  irroratum
floral  nectar  showed  significant  chitinolytic  activity.  Our  results
demonstrate  that  class  III  chitinase  (GH  18  family)  also  exists  in
floral  nectar.  The  functional  relationship  between  class  II  and  III
chitinases  and  the  role  of  these  pathogenesis-related  proteins  in
antimicrobial activity in nectar is suggested.
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Class III chitinase
Glycoside hydrolase
Pathogenesis-related proteins

Abbreviation

GH Glycosyl hydrolase
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Electronic supplementary material

The online version of this article (doi:10.1007/s00425-016-2546-y)
contains supplementary material, which is available to authorized users.

Introduction
Floral nectar is a rich source of sugar, amino acids, vitamins, organic
acids, metal ions, and other metabolic components, which makes it
potentially an excellent microbial growth medium (Nicolson and
Thornburg 2007 ). Insects that visit flowers are non-sterile (Evans and
Armstrong 2006 ), therefore as well as pollen, they can also transfer
between flowers any microorganisms that they carry (Ferrari et al.
2006 ). Furthermore, flowers can remain open for several days, during
which time their metabolically rich nectar would potentially allow
microbial growth in close proximity to the plant’s reproductive tract.
However, despite this, infections of the gynoecium are relatively rare in
plants. This implies there must be an active defense system in nectar to
reduce such infections. A number of mechanisms have been reported
with regards to antimicrobial properties of floral nectar, such as high
levels of hydrogen peroxide (Carter and Thornburg 2004 ) and
secondary compounds such as phenolics (Weston 2000 ). It is well
known that floral nectar contains proteins (Carter and Thornburg 2000 ),
which mainly comprise enzymes that protect the nectar from microbial
infestation (Carter and Thornburg 2004 ). However, to date very few
reports have characterized any nectar proteins directly involved in
defense against microbes, with the exception of pathogenesis-related
proteins, which protect extra-floral nectar from microbial infestation
(Gonzalez-Teuber et al. 2009 , 2010 ). One such group of proteins is
chitinase (EC 3.2.1.14), which catalyze the hydrolysis of !-1,4 linkages
in chitin, a polymer of N-acetyl-D-glucosamine.

Chitinases occur in many organisms such as plants, insects, fungi,
bacteria, marine invertebrates and fish (Flach et al. 1992 ). From their
amino acid sequences, chitinases are now classified into seven classes
(classes I, II, III, IV, V, VI, and VII) (Neuhaus et al. 1996 ). According
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to the family classification proposed by Henrissat and Davies ( 1997 ),
chitinases belonging to classes I, II, IV, VI and VII are grouped into the
glycosyl hydrolase family 19 (GH19), and those belonging to classes III
and V are grouped into the GH18 family. Plants do not contain chitin,
therefore plant chitinases may be involved in the defense of plants
against chitin-containing pathogens (Collinge et al. 1993 ). Plant
chitinases have been characterized with respect to their physiology and
molecular structures and are implicated in defense mechanisms,
especially against pathogen attacks on sensitive and unprotected organs
(Collinge et al. 1993 ; Kasprzewska 2003 ; Grover 2012 ). Experimental
evidence for chitinases acting as defense proteins has been obtained
using transgenic plants that overexpressed chitinases and exhibited
higher resistance to pathogens (Schlumbaum et al. 1986 ; Broglie et al.
1991 ; Minic 2008 ). Wagner et al. ( 2007 ) firstly detected chitinase
(class IV, GH19 family) in pollination drop of several gymnosperm
species, Juniperus communis, Juniperus oxycedrus and Welwitschia
mirabilis. Gonzalez-Teuber et al. ( 2010 ) identified class I chitinase
(GH19) in extrafloral nectar of Acacia species, and Escalante-Perez et
al. ( 2012 ) identified classes III (GH18), IV (GH19), and V (GH18) in
extrafloral nectar of Populus trichocarpa. Recently, a class I chitinase
(GH19) and a class II chitinase (GH19) were detected in floral nectar of
Nicotiana attenuate (Seo et al. 2013 ) and Petunia (Hillwig et al. 2011 ),
respectively. On current evidence, GH19 chitinases are common in plant
secretions on reproductive organs, pollination drops or floral nectar,
whereas GH18 chitinases may be rarer. However, there has not been a
detailed investigation into the roles of these proteins in preventing or
limiting microbial growth in floral nectar.

Rhododendron is a genus which produces large insect-pollinated
flowers with copious nectar. Moreover, the flowers can be open for up
to 8 days (Primack 1985 ), and mostly employ a generalist pollination
strategy, therefore they present ample opportunities for microbes to
arrive and multiply. In the current study, therefore we focused on one
large-flowered Rhododendron species, R. irroratum Franch, which is
self-compatible and native to Yunnan in SW China (Zha et al. 2010 ).
Here we characterize the nectar of this species with respect to general
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characters such as sugar content and pH, and two specific factors that
might be involved in direct defense from microbial attack: chitinases,
and hydrogen peroxide.

Materials and methods

Rhododendron irroratum nectar collection, pH,
hydrogen peroxide and sugar analysis
R. irroratum Franch. plants from the living collection in Kunming
Botany Garden were used in this study. This species flowers from
March to May, and flowers were examined during that period in 2009.
Fresh nectar was collected from newly opened flowers with a pipette
and autoclave tips. From each flower, ca. 20–50 "l of nectar was
obtained. Fresh nectar from each individual was pooled and used as
independent samples for sugar, total protein and chitinolytic activity
analysis. Nectar samples were kept on ice and stored at #20 °C prior to
use. Total sugars were estimated by the phenol–sulphuric acid method
(Dubois et al. 1956 ) and with a digital refractometer (Atago PAL-1,
Tokyo, Japan). The pH of fresh nectar from 55 flowers from 8
individual plants were tested by wide and narrow range pH test strips
(Sigma). The level of hydrogen peroxide in pooled nectar from each
individual plant was analyzed by a commercially available colorimetric
assay kit (Beyotime, Jiangshu, China) and measurement was conducted
as described in the manufacturer’s manual.

Nectar protein quantification, concentration and
electrophoresis
The protein content of collected nectar was determined according to
Bradford ( 1976 ), using bovine serum albumin as standard. Fresh nectar
protein was concentrated 20 times by ultra centrifugal filtering with
Microcon YM-3 centrifugal filter units (cut-off 3000 Da; Millipore,
Bedford, MA, USA). Distilled water was added after concentration to
remove low molecular weight compounds by centrifugation.

Tricine sodium dodecyl sulfate-polyacrylamine gel electrophoresis
(Tricine SDS-PAGE) was carried out on 12 % (w/v) self-poured
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polyacrylamide gel following the method of Schagger and von Jagow
( 1987 ). Concentrated nectar protein samples were boiled in sample
buffer (with and without 0.1 M dithiothreitol) for 5 min prior to gel
loading. Two types of molecular weight protein markers (wide range
and low molecular weight marker) were used as standards. Proteins
were visualized by staining with Coomassie Brilliant Blue (CBB)
G-250.

Mass spectrometry and protein identifications
For the identification of the target protein, matrix-assisted laser
desorption/ionization time-of-flight mass spectrometry (MALDI-TOF
MS) was used. Proteins were visualized with CBB-G250 after
SDS-PAGE, and then the target bands were excised from the gel and
washed with 25 mM NH HCO , 40 % (v/v) ethanol five times. The gel
was cut into pieces and dehydrated with 1 ml of acetonitrile and dried in
vacuo. Following this, 0.1 µg/ml trypsin in 25 mM NH HCO  was
added to the gel pieces and incubated at 37 °C for 16 h. Peptide
fragments were extracted from the gel pieces with 50 % (v/v)
acetonitrile, 5 % (v/v) trifluoroacetic acid for 30 min. The extracts were
dried in vacuo, dissolved in 5 µl of 50 % (v/v) acetonitrile, 0.1 % (v/v)
trifluoroacetic acid, and subjected to an ABI 4700 proteomics analyzer
(Applied Biosystems). Mass fingerprints of tryptic peptides dissolved in
5 µl of 50 % (v/v) acetonitrile, 0.1 % (v/v) trifluoroacetic acid were
generated by MALDI-TOF–MS using an Applied Biosystems 4700
Proteomics Analyser with TOF/TOF optics in the MS mode. A Nd:YAG
laser (355 nm) was used to irradiate the sample. The spectra were
acquired in reflection mode in the mass range 700–3200 Da.
Amino-acid sequences of the fragments were determined in MS/MS
mode with DeNovo Explorer software (Applied Biosystems).

Nucleic acid extraction
Genomic DNA was extracted from young fresh leaves of R. irroratum
individuals using a modified CTAB method (Kobayashi et al. 1998 ).
Total RNA was isolated from fresh R. irroratum leaves, and separately
from newly opened flowers’ corolla basal nectar pouches (which
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contain nectar glands), following the method of Jaakola et al. ( 2001 ).
Extracted DNA and RNA quality and concentration were assessed using
a nanodrop Spectrophotometer (ND-2000, Thermo Fisher Scientific).

Rapid amplification of cDNA 3!-end
Peptide sequences identified by mass spectrometry appeared to be
chitinases of classes II and III. To amplify their DNA sequences,
existing sequences for chitinase genes available from Genbank were
examined and used to design gene specific primers: Rhchi2-3 for the
class II chitinase gene, and Rhchi3-1F for class III chitinase gene
(Table 1 ).

Table 1

DNA primers used for amplification of Rhchi1 and Rhchi3 from cDNA and gDNA of 

Primers Sequence  (5!–3!)

Rhchi2-3 CCGTGGYCCCATCCAAATTWC

Rhchi3-1F TGGGTKCARTTYTAYAAYARYCC

LAD1 ACGATGGACTCCAGAGCGGCCGCVNVNNNGGAA

LAD2 ACGATGGACTCCAGAGCGGCCGCBNBNNNGGTT

LAD3 ACGATGGACTCCAGAGCGGCCGCVVNVNNNCCAA

LAD4 ACGATGGACTCCAGAGCGGCCGCBDNBNNNCGGT

AC1 ACGATGGACTCCAGAG

Rhchi2-7 TTGCAGTCAAGRTTATTYCC

Rhchi2-F0 TACTAGCCAACCCAGACTTGGTCGCA

Rhchi2-F1 ACGATGGACTCCAGTCCGGCCACAATCCCCGAAACCCTCCAGCCA

Rhchi2-F2 GGATTGAGTGTGGAAAAGGGTCTACTAC

Rhchi2-R0 TGTCGAGACGAACGGTGAGATATTGAG

Rhchi2-R1 ACGATGGACTCCAGTCCGGCCTGCTGCAAGTGGGAAGACTTTGGAG

Rhchi2-R2 GAGAGAGAGAGATGGTGCTCACTGTG

Rhchi3-R0 CCCCTTTACAGCATCACTGTAACCAC

IUPAC code for mix bases M a/c, R a/g, W a/t, Y c/t, S c/g, K g/t, H a/c/t, V a/c/g, 

a

a
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Primers Sequence  (5!–3!)

IUPAC code for mix bases M a/c, R a/g, W a/t, Y c/t, S c/g, K g/t, H a/c/t, V a/c/g, 

Rhchi3-R1 ACGATGGACTCCAGTCCGGCCACTTCCTTTGGAATGTAACCGTTGCCA

Rhchi3-R2 TCGACTGTAACCATCGCGTCCATGAGT

Rhchi3-F0 TTCAAGGACTCATGGACGCGATGGT

Rhchi3-F1 ACGATGGACTCCAGTCCGGCCTCATGGACGCGATGGTTACAGTCGA

Rhchi3-F2 CTGGCAACGGTTACATTCCAAAGGAAG

Rhchi2BR GCCTTTGGTTATTGCAGTCAAG

Rhchi2BRTF1 ATGAGGATTTTGGCACTAATTTC

Rhchi3RTR1 GAGAGACCATTCAAGCCTCT

Rhchi3RTF2 ATGAAACTTCTTTCACCC

RhUBQF AGAGGTGGTGTTGAACGATCG

RhUBQR TCTCGCACTTATTACCGCACA

RhACTF TCTTGATCTTGCTGGTCGTG

RhACTR GGGCATCTGAATCTCTCAGC

cDNA synthesis from R. irroratum corolla total RNA and rapid
amplification of cDNA 3$ end (RACE)-PCR were done with 3$-Full
RACE Core Set kit (Takara, Dalian, China). RACE products were
separated by electrophoresis on 1.5 % agarose gels. Specific bands were
cut from the gel, purified and cloned into pMD 18-T vector (Takara)
and sequenced in both directions with universal M13F (#47) and M13R
(#48) primers on the vector. Verified 3$ end class II and III chitinase
genes were named as Rhchi2 and Rhchi3.

PCR on gDNA and cDNA
The 3$end of Rhchi2 and Rhchi3 gene cDNA sequence information was
used for genome walking in the 5$ and 3$ directions using
high-efficiency thermal asymmetric interlaced PCR (hiTAIL-PCR)
methodology (Liu and Chen 2007 ). For the Rhchi2 gene, primer

a

a
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Rhchi2-7 was designed according to the end of the partial cDNA
sequence. Primers Rhchi2-3 and Rhchi2-7 were used to amplify the
partial region of Rhchi2 from genomic DNA of R. irroratum using the
following program cycle: 4 min at 94 °C (1 cycle); 1 min at 94 °C,
1 min at 55 °C and 1 min at 72 °C (33 cycles); and 10 min at 72 °C (1
cycle). PCR products were purified, cloned and sequenced as above.
Gene specific primers (Rhchi2-F0, F1, F2, R0, R1 and R2) were
designed according to the sequence result. For Rhchi3 gene, gene
specific primers (Rhchi3-F0, F1, F2, R0, R1 and R2) were designed
according to the partially obtained cDNA sequence by RACE. All
primers used in this study including the arbitrary degenerate (LAD1–4,
AC1) primers used for genome walking are listed in Table 1 . The
cycling conditions of Liu and Chen ( 2007 ) were strictly adhered to. The
hiTAIL-PCR products were purified, cloned and sequenced as above.
Overlapping DNA sequences were combined to make full-length Rhchi2
and Rhchi3 genes. New primers (Rhchi2BR and Rhchi2BRTF1 for
Rhchi2 gene, Rhchi3RTF2 and Rhchi3RTR1 for Rhchi3 gene) based on
the terminals of the deduced full length genes were used to amplify the
genes from cDNA and gDNA and sequenced to verify the assembled
results. All sequences generated in this study have been deposited in
GenBank (Accession Nos. GU944515–GU944518).

Semi-quantitative RT-PCR
cDNA was synthesized from total RNA extracted from both the leaves
and corolla nectar pouches as described above. Based on the cloned full
length Rhchi2 and Rhchi3 sequence, gene specific primers (Rhchi2BR
and Rhchi2BRTF1 for Rhchi2 gene, Rhchi3RTF2 and Rhchi3RTR1 for
Rhchi3 gene) were used in reverse transcription-PCR (RT-PCR). The
optimal amounts of cDNA and the number of PCR cycles corresponding
to the exponential phase of the reaction were determined. PCR was
performed using a PTC-200 thermocycler (MJ Research, Watertown,
MA, USA) with the program: 2 min at 94 °C (1 cycle); 40 s at 94 °C,
40 s at 52 °C and 1 min at 72 °C (35 cycles); and 10 min at 72 °C (1
cycle). Housekeeping genes for Rhododendron (RhUBQ–ubiquitin and
RhAct–actin) were selected as reference genes with Rhododendron
special ubiquitin (RhUBQF/R) and actin (RhACTF/R) primers
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(Nakatsuka et al. 2008 ; Peng et al. 2008 ), respectively, to investigate
the relative expression of Rhchi2 and Rhchi3 in leaf and nectar pouches
of R. irroratum. As a control for genomic DNA contaminations, all
reactions were performed in duplicate with the control sample lacking
reverse transcriptase. All RT-PCR products were separated by
electrophoresis in a 1.5 % agarose gel and visualized after staining with
ethidium bromide.

Computer analysis
The theoretical isoelectric point (pI) and molecular weight of mature
Rhchi2 and Rhchi3 proteins were obtained using the Compute pI/Mw
Web server (http://web.expasy.org/compute_pi/; Gasteiger et al. 2005 ).
N-terminal signal peptide and cleavage sites were predicted using
SignalP 4.1 server (http://www.cbs.dtu.dk/services/SignalP/; Petersen et
al. 2011 ). Predictions of Rhchi2 and Rhchi3 subcellular localizations
were performed by TargetP webserver using “PLANT networks”
(http://www.cbs.dtu.dk/services/TargetP/; Emanuelsson et al. 2007 ) and
YLoc (http://abi.inf.uni-tuebingen.de/Services/YLoc/) based on “YLoc-
HighRes Plants model” (Briesemeister et al. 2010 ). The amino acid
sequences of the mature peptide of Rhchi2 and Rchi3 were used to
predict the disulfide bonds through the DiAminoacid Neural Network
Application (DiANNA 1.1) Web server at http://clavius.bc.edu
/~clotelab/DiANNA/ (Ferre and Clote 2006 ). Protein identification
searches were performed in databases using software-tools found in
“http://www.Expasy.org/.” The sequence alignment was performed
using Clustal X software (Larkin et al. 2007 ).

Activity staining of chitinases after SDS-PAGE
The chitinolytic activity of fresh nectar was carried out according to the
method of Trudel and Asselin ( 1989 ). Glycol chitin obtained by
acetylation of glycol chitosan (Sigma) was incorporated into the PAGE
gel. Parallel SDS–PAGE was performed for visualization of chitinase
activity with Calcofluor White stain (Fluka) and protein bands with
CBB staining (Laemmli 1970 ). Nectar samples were not boiled before
loading. To serve as controls, protein-free nectar was created by ultra
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centrifugal filtering of fresh nectar using a Microcon YM-3. Into each
well on the gel was loaded either 15 "l fresh R. irroratum nectar, 20 "g
concentrated R. irroratum nectar protein, or 15 "l protein-free nectar.
One nectar protein sample was run under reducing conditions with
0.1 M DTT in the sample buffer and the others were under non-reducing
conditions. After electrophoresis, gels were incubated for 13–20 h at
37 °C in 50 mM Tris–HCl pH 8.9, 1 % Triton–X 100 (v/v), to remove
SDS and promote chitinase activity against glycol chitin. First the gel
was stained with 0.01 % Calcofluor White stain in 50 mM Tris–HCl pH
8.9 and the chitinase activity was determined by UV transilluminator.
Areas of the activity bands with digested chitin were revealed as dark
bands on a fluorescent background under the UV transilluminator and
photographed. A replicate gel with the same samples stained with CBB
G-250 was used for comparison of the positions of the protein bands.

Fresh nectar chitinolytic activity assay
Fresh nectar chitinolytic activity was tested using chitin azure (chitin
covalently linked with Remazol Brilliant Violet 5R dye, Sigma) as
substrate. For each individual experiment, 20 µl of fresh nectar from a
single R. irroratum individual was incubated at 28 °C with 1 mg of
chitin azure. This was done for each of six R. irroratum individuals, and
for each individual, four separate samples were incubated for 2, 4, 8, or
24 h, making 24 treatments in total. In addition, three positive control
samples were run using chitinase (0.01, 0.02, and 0.1 units) from
Streptomyces griseus (Sigma, C6137) in 50 mM potassium phosphate
(pH 6.0) incubated with 1 mg of chitin azure at the same reaction
volume and for the same time periods. Protein-free nectar, 15 % glucose
solution and sodium phosphate (50 mM, pH = 6.0) were included as
reference samples.

Following incubation, the reaction mixture was cooled on ice for 10 min
and centrifuged at 15,000g for 5 min. The absorbance of the supernatant
was measured spectrophotometrically at 550 nm with nanodrop.
Distilled water was used for instrument blanking.

Results
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pH, total protein, total sugar and H O  of R.
irroratum nectar
R. irroratum nectar was alkaline with a pH of 8.3 ± 0.29 (mean ± SD,
n = 55). None of the pH of the nectar samples collected from 55 random
selected flowers at different developmental stages was below 7.5,
whereas floral nectar is generally slightly acidic (Nicolson and
Thornburg 2007 ). The results of total sugar determination by two
different methods were highly consistent, 14.6 ± 3.6 (ºBrix, n = 8) with
a refractometer and 148 ± 53 mg ml  (n = 8) by phenol–sulphuric acid
analysis, respectively. It showed that R. irroratum nectar was less
concentrated for sugars than reported for other nectar (Baker and Baker
1983 ). Flowers with less concentrated nectar tend to be pollinated by
birds and bats (Baker and Baker 1983 ); however, bees were observed as
the main pollinator for R. irroratum flowers (Hong-Guang Zha,
personal observation). The concentration of H O  in R. irroratum nectar
was 30.1 ± 25.84 µM (n = 15), far less than the concentration reported
in tobacco nectar which could be up to 4 mM (Carter and Thornburg
2000 ).

Nectar protein profile analysis by tricine SDS-PAGE
Concentrated nectar proteins were separated using tricine
SDS-PAGE,yielding more than seven clearly distinguished bands as
visualized by CBB G-250 stain under reducing (+DTT) or non-reducing
(DTT) conditions (Fig. 1 ). Major protein molecular weight ranged from
ca. 25 kDa to 100 kDa. Two clearly visible bands with apparent
molecular weight 28 and 30 kDa, which were labeled as Rhchi2 and
Rhchi3, respectively, were isolated and subjected to mass spectrometry
analysis. Migration rates for both these proteins increased under
non-reducing conditions, which indicated that disulfide bonds probably
played an important role in their structure formation, and that both were
likely to be monomers.

Fig. 1

Tricine SDS-PAGE of nectar proteins. Lanes 1 and 4 are different ranges
of  reference  proteins  with  the  molecular  masses  of  the  standards
indicated;  lanes  2  and  3  contain  equal  amount  of  concentrated  nectar

2 2

#1

2 2
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protein  under  reducing  (+DTT)  and  non-reducing  conditions  (#DTT).
Protein bands were selected for mass spectrometry analysis and labeled as
Rhchi2 and Rhchi3

Identification of Rhchi2 and Rhchi3 using mass
spectrometry
Amino-acid sequences of internal regions of Rhchi2 and Rhchi3 were
analyzed by MALDI-TOF–MS/MS and de novo sequencing analysis
(Suppl. Fig. S1). MS/MS spectrum of two parent ions at m/z 1451.65
and 2642.2 for Rhchi2 were annotated by DeNovo Explorer, yielding
the amino acid sequences “GFYTYEAFI(L)AAAK” and
“TAL(I)WFWMTPQSPKPSSHDVI(L)TGR” for this peptide. Both the
de-novo interpreted amino acids sequences matched well with the
sequence of a typical class II chitinase from Vaccinium corymbosum
(Kikuchi and Masuda 2009 ; Accession No. B9ZZZ5) and Nepenthes
khasiana (Eilenberg et al. 2006 ; Accession No. Q6IVX4). Two parent
ions at m/z 1110.5 and 1526.77 for Rhchi3 yielded the amino acid
sequences “YGGI(L)ML(I)WDR” and “I(L)VNL(I)GFL(I)SAFGNFK”
which matched the sequence of class III chitinase from Sphenostylis
stenocarpa (Accession No. Q9XHC3), and Nicotiana tabacum (Lawton
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et al. 1992 ; Accession No. P29061).

Cloning of the coding gene of Rhchi2 and Rhchi3
As described in Materials and methods, 3$ RACE and hiTAIL-PCR
techniques were combined for the cloning of two full length chitinase
genes. By the 3$ RACE method, two fragments containing poly A tail at
the 3$ end of each of Rhchi2 and Rhchi3 were amplified with degenerate
primers designed according to the MS identified sequence or a
conserved region in the alignment of reported plant chitinase genes
(data not shown). Sequence results were verified by Blastn, which
showed high identity with reported Class II and III plant chitinase
genes.

Based on the results of 3$ RACE, gene specific primers were designed
for genome walking in the 5$ direction of the two genes. The full-length
coding region of the Rhchi2 and Rhchi3 genes were amplified from
cDNA and genomic DNA. For locations of gene specific primers used
for cloning, see Fig. 2 . Compared to the cDNA sequence, the genomic
sequence of the Rhchi2 gene contained two introns, of 500 and 586 bp,
in the coding region (Figs. 2 a, 3 ). Rhchi2 comprised 795 bp, encoding
264 amino acids. The first 19 amino acids function as a signal peptide
as predicted by SignalP 3.0. The mature Rhchi2 protein had a predicted
molecular mass of 26,355.35 Da and a fairly alkaline isoelectric point
of 8.19. The genomic sequence of the Rhchi3 gene contained one
1474 bp intron in the coding region (Figs. 2 b, 4 ). Rhich3 comprised
891 bp, encoding 296 amino acids. The first 24 amino acids function as
a signal peptide as predicted. The mature Rhchi3 protein had a
predicted molecular mass of 29,525.19 Da and a neutral isoelectric
point of 7.04. The predicted molecular mass of both Rhchi2 and Rhchi3
were consistent with SDS-PAGE results (Fig. 1 ) and with other
reported plant class II and III chitinases (Hamel et al. 1997 ). The
predicted signal peptides are likely required for both Rhichi2 and
Rhchi3 for entry into the endoplasmic reticulum and later secretion via
the endomembrane system (Vitale and Chrispeels 1992 ).

Fig. 2
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Schematic representation of the genomic organization of Rhchi2 (a) and
Rhchi3  (b).  Rhchi2  shows  the  presence  of  three  exons  while  Rhchi3
shows the presence of two (indicated by a rectangular box). Binding sites
and directions of the primers are indicated by arrows  and labeled as in
Table 1 . Initiation codons and termination codons are shown

Fig. 3

Nucleotide  (GenBank  Accession  No.  GU944515  and  GU944518)  and
deduced  amino  acid  sequences  of  Rhchi2  (class  II  chitinase).  The
nucleotide sequence is numbered on the right. The deduced amino acids
are shown in a one-letter code above the corresponding codons. The six
conserved  cysteine  residues  that  presumably  form three  intramolecular
disulfide bonds and the peptides identified by MS are indicated by gray
shading. The stop codon, TATA box site and Poly (A) addition signal are
indicated in bold. The stop codon is indicated with an asterisk. The open
reading frame (ORF) of Rhchi2 encodes 264 amino acids (795 bp) with a
predicted N-terminal signal peptide of 19 amino acids shown in italics
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Fig. 4
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Nucleotide  (GenBank  Accession  No.  GU944516  and  GU944517)  and
deduced  amino  acid  sequences  of  Rhchi3  (class  III  chitinase).  The
nucleotide sequence is numbered on the right. The deduced amino acids
are  shown  in  one-letter  code  above  the  corresponding  codons.  The
catalytic glutamate residue in the chitinolytic active site is boxed. The six
conserved  cysteine  residues  that  presumably  form three  intramolecular
disulfide bonds and MS identified peptide are indicated by gray shading.
The stop codon, TATA box site and Poly (A) addition signal are indicated
in bold. The stop codon is indicated with an asterisk. The open reading
frame  (ORF)  of  Rhchi3  encodes  296  amino  acids  (891  bp)  with  a
predicted N-terminal signal peptide of 24 amino acids shown in italics
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AQ1

In addition, when Rhchi2 and Rhchi3 were analyzed by TargetP and
YLoc programs, both proteins were predicted to enter the secretory
pathway and to be located in the extracellular space. These predictions
are in agreement with the hypothesis that Rhchi2 and Rhchi3 were
secreted out from the nectary gland and presenting as soluble proteins
in nectar.

Amino acid sequence analysis
A Blast search of the entire predicted Rhchi2 amino acid sequence
revealed a significant affinity with chitinases and chitinase-like proteins
of the GH 19 family, with the highest sequence homology of 85.2 % for
Vaccinium corymbosum class II chitinase (Accession No. B9ZZZ5).
Rhchi2 lacks the cysteine-rich domain (CRD) which is associated with
chitin binding in class II chitinase classification. The carboxy-terminal
extension (CTE) is also absent, which indicates that it is secreted to the
apoplast while class I plant chitinases are targeted to the vacuole by
means of a CTE signal (Hamel et al. 1997 ).

Rhchi3 showed a significant identity with class III plant basic
endochitinase of the GH 18 family, with the highest identity (70 %) in
the sequence of Nicotiana tabacum class III chitinase (Accession No.
P29061). In addition, the two motifs conserved in class III chitinases,
KVLLSLGGG and LDGIDFDIE including the catalytic glutamate
(Esaka and Teramoto 1998 ), as well as an N-terminal signal peptide
sequence like that found in other plant class III chitinases, were present.
Based on the cloned sequences, we conclude that the Rhchi2 and
Rhchi3 genes encode class II and III chitinase, respectively.

Based on the primary sequences of mature Rhchi2 and Rhchi3,
DiANNA predicted three disulfide bonds connected for each protein as
follows: Cys43–Cys105, Cys117–Cys126 and Cys225–Cys257 for
Rhchi2; Cys44–Cys91, Cys74–Cys81 and Cys182–Cys211 for Rhchi3.
Therefore, all the cysteines of Rhchi2 and Rhchi3 proteins are predicted
to be involved in the disulfide bonds, which are conserved in class II
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and III plant chitinase and considered to be crucial in maintaining
tertiary structure formation (Beintema 1994 ; Huet et al. 2008 ). This
result is consistent with the varied migration rate of Rhchi2 and Rhchi3
during SDS-PAGE under reducing and non-reducing conditions,
because the reducing reagent DTT can disrupt disulfide bonds in
proteins and results in a changed tertiary structure.

The identity between Rhchi2 and Rhchi3 based on amino acid sequence
was only 12.4 %, which indicated no evolutionary relationship between
them. The deduced amino acid sequences of Rhchi2 and Rhchi3 were
compared separately with some known class II and class III plant
chitinases from ExPASy server (Suppl. Fig. S2 and S3). Only sequences
from species that have both class II and III chitinase sequences
deposited in the database were considered, i.e., Zea mays, Glycine max,
Nicotiana tabacum, Vitis vinifera, Oryza sativa, and Gossypium
hirsutum. In cases where more than one chitinase homolog existed for
the same species, the most similar one to Rhchi2 or Rchi3 was chosen
for alignment. Both Rhchi2 and Rhchi3 show homology with other
reported plant class II and III chitinases.

Rhchi2 and Rchi3 expression in leaves and flowers
The expression of the Rhchi2 and Rhchi3 in nectar pouches and leaves
was examined using semi-quantitative RT-PCR with gene specific
primers, and the constitutively expressed genes actin and ubiquitin were
used as references (Fig. 5 ). Without reverse transcription, no amplified
PCR products were generated (results not shown). Rhchi2 showed a
similar pattern of expression in nectar pouches and leaves, while
Rhichi3 only expressed in nectar pouches.

Fig. 5

RT-PCR  analysis  of  Rhchi2  and  Rhchi3  expression  in  flower  (corolla
nectar pouches) and leaf. Housekeeping genes, ubiquitin and actin, were
used as control
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Determination of chitinolytic activity in R. irroratum
nectar
Chitinase activity in fresh nectar was measured using chitin azure as the
substrate and commercial chitinase from Streptomyces griseus as a
positive control (Fig. 6 ). The chitinolytic activity in 20 "l of fresh
nectar was almost 0.1 units S. griseus chitinase. Protein free nectar also
showed some chitinolytic activity, but this was significantly lower than
that of untreated fresh nectar, especially after an extended incubation
time (Student’s t test, P < 0.001). This indicated that unknown lower
molecular mass compounds such as H O  in nectar might degrade chitin
or disrupt the linkage between the dye and chitin.

Fig. 6

Chitinase  activity  of  fresh  nectar  with  chitin  azure.  Experiments  were
performed six  times and the small  bars  represent  standard  errors.  The
chitinase  activity  of  the  fresh  nectar  was  measured  by  the  release  of
Remazol  Brilliant  Violet  5R from chitin  azure  and  compared  with  the
activity of Streptomyces griseus  chitinase in 50 mM sodium phosphate
buffer (PBS, pH = 6.0), which was used as a positive control

2 2
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Both fresh nectar and concentrated nectar protein samples exhibited
chitinolytic activity after SDS-PAGE (Fig. 7 ). No visible protein bands
could be detected by CBB G-250 stain in the lane of the fresh nectar
sample which showed low protein concentration in that nectar sample.
Nectar protein sample treated with DTT showed drastically reduced
chitinolytic activity, which indicates a natural tertiary structure
formation and that disulfide bonds are crucial for its chitinolytic
activity. More than two positive bands with chitinolytic activity were
visible in each of the fresh nectar and nectar protein lanes of the gel.
The smallest band corresponds to the position of chitinases in the
control gel. Another predominant band was at the position of ca.
100 kDa, which either indicates the presence of other chitinases in the
nectar, or that major chitinases in the nectar were in trimer or tetramer
form, having failed to dissociate under the SDS–PAGE conditions due
to its SDS-resistant property and mild treatment before loading.
Alternatively, glycol chitin in the zymogram gel could affect the
chitinase migration rate during the electrophoresis or promote the
chitinase monomers to form trimers or tetramers which have higher
chitinolytic activity. Given that no evidence for other chitinases was
found, and that both monomer and dimer formation were found together
in Bacillus thuringiensis (Liu et al. 2010 ), we prefer the latter
explanation, although the presence of other chitinases can not yet be

e.Proofing http://eproofing.springer.com/journals/printpage.php?token=...

22 of 38 11/05/2016 11:28

Richard Milne
,

Richard Milne




discounted.

Fig. 7

In gel chitinolytic activity assay. a SDS-PAGE with 0.02 % glycol chitin
and stained with Calcofluor White stain, was photographed under UV. b
Regular SDS-PAGE for nectar and concentrated nectar protein samples
and stained with CBB G-250.  For both gels,  lanes  1,  and 4,  reference
proteins M1 and M2, the same as described in Fig. 1 ; lane 2, protein free
nectar;  lane  3,  fresh  nectar;  lane  5,  concentrated  nectar  protein  under
non-reducing  condition;  lane  6,  concentrated  nectar  protein  under
reducing condition. Bands containing chitinolytic activity are shown by
arrows

Protein free nectar showed no chitinolytic activity in the gel, and no
protein could be detected in it by CBB G-250 stain. This suggested that
the chitinolytic activity in protein-free nectar is probably caused by
compounds that cannot be removed by ultra centrifugal filtering,
possibly due to small molecules. A likely candidate is H O , which has
been demonstrated to be able to degrade chitosan (Chang et al. 2001 ).

2 2
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A trace amount of chitinase might flow through, and be present in final
filtrate of supposedly protein free nectar during the centrifugation
process, but it could not contribute so much chitinolytic activity.

Discussion

GH18 and GH19 chitinases coexist in R. irroratum
floral nectar
Chitinases are constitutively present in plants and developmentally
regulated as well as tissue-specific (Hamid et al. 2013 ). Based on
amino acid sequences, plant chitinases have been grouped into two
families: GH family 18 and GH family 19. GH 19 chitinases contain
globular domains, whereas GH 18 chitinases are characterised by 8
%-helices and 8 !-strands (Adrangi and Faramarzi 2013 ; Hamid et al.
2013 ). GH18 chitinases have a large distribution in organisms,
including plants, bacteria, fungi, mammals, and viruses. However, GH
19 chitinase appears to be restricted to plants, fungi, and bacteria (Iseli
et al. 1996 ; Udaya Prakash et al. 2010 ; Adrangi and Faramarzi 2013 ).
Actinobacteria and purple bacteria might have acquired GH 19 chitinase
genes from plants (Udaya Prakash et al. 2010 ). The chitinases of the
two different families do not share amino acid sequence similarity, and
have completely different 3-dimensional (3D) structures and molecular
mechanisms (Hamid et al. 2013 ). Therefore, they are likely to have
evolved from different ancestors. GH 18 and 19 chitinases exhibit
different substrate specificities and use different hydrolytic
mechanisms. The former carries out the hydrolysis of the !-1,
4-glycosidic linkage by means of a retaining mechanism, and the latter
through an inverting mechanism (Hamid et al. 2013 ).

The present study firstly demonstrated that two different classes of
chitinases (class II and class III) are both present in Rhododendron
irroratum floral nectar, belonging to GH19 and GH18 family,
respectively. Significant chitinolytic activity was detected in fresh R.
irroratum nectar. The functional relationship between the class II and
III chitinases in the nectar is still unclear. The physiological function of
class II plant chitinases in plants is a matter of speculation; their
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production could be induced by various environmental stresses and have
dual functions (Kasprzewska 2003 ; Takenaka et al. 2009 ). Class II
chitinases are generally extracellular, and can be detected in the
apoplastic fluid or culture medium of protoplasts (Benhamou et al.
1990 ; Dore et al. 1991 ). They are not thought to be antifungal, either
alone or in combination with other proteins, because of their lack of a
cysteine-rich domain (Melchers et al. 1993 ). However, transgenic
tobacco and wheat plants expressing a barley class II chitinase showed
enhanced resistance to fungal infection (Jach et al. 1995 ; Oldach et al.
2001 ). The involvement of the cysteine-rich domain in antifungal
efficacy has yet to be definitively characterized (Singh et al. 2007 ).
Class II chitinase was reported from bark tissue of stems V.
corymbosum, in the same family as Rhododendron, and was suggested
to be involved in tolerance to low temperature in winter or
unseasonably low temperature in spring (Kikuchi and Masuda 2009 ); it
has a very high homology (77 %) with Rhchi2 in the primary structure.
The altitude range of R. irroratum in Yunnan is 2000–3000 m
(Chamberlain 1982 ), and it flowers from March to May, so it is
possible that very low temperature in the morning during its flowering
season could cause damage to the floral organ, and that antifreeze
proteins in nectar could help protect against this.

Brunner et al. ( 1998 ) compared ten chitinases which functionally
belong to all five classes in tobacco and drew the conclusion that the
class III basic isoforms were the most efficient in inducing bacterial
lysis while the class II chitinase was the least efficient. Furthermore,
production of class III chitinases in rice can be induced by H O  (Park
et al. 2004 ), which implies that their production might be an inducable
response to pathogen attack. In alkaline R. irroratum nectar, class III
chitinase (Rhchi3) and H O  (see below) may play a prominent role in
antimicrobial activity, whereas the class II chitinase detected (Rhchi2)
might be involved but probably has a main function as an antifreeze
protein.

Antimicrobial mechanisms in R. irroratum nectar
Floral nectar from R. irroratum is alkaline, with a pH range of 7.5–8.8.

2 2

2 2
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Most plant species have acidic nectar (Baker and Baker 1983 ; Nicolson
and Thornburg 2007 ). To our knowledge the only reported exception is
Lathraea clandestina, whose nectar is slightly acidic when freshly
secreted (about pH 6.5), but turns highly alkaline (pH 11.5) in aged
flowers (Pr&s-Jones and Willmer 1992 ). Therefore, our finding is the
first report of nectar above pH 7.5 in freshly opened flowers, or
consistently above 7.5. Given that low pH might be an important
mechanism for antimicrobial activity in honey (Molan et al. 1997 ), the
same might apply in nectar. It is reasonable that some extreme acidic
nectar have similar mechanisms to resist microbial attack. If so, where
species do not have acidic nectar, other antimicrobial mechanisms
would be necessary.

So far, two protective strategies have been well demonstrated with
regard to the antimicrobial property of nectar, H O  in tobacco floral
nectar and pathogenesis-related (PR) proteins in the extraflora nectar
(EFN) of Acacia species (Carter and Thornburg 2004 ; Gonzalez-Teuber
et al. 2009 , 2010 ; Heil 2011 , 2015 ; Nocentini et al. 2015 ). In the
present study, both H O  and chitinases were detected in R. irroratum
nectar. The concentration of H O  varied between 18 and 104 "M with
an average of 30 "M; this is less than was reported for tobacco nectar
(Carter and Thornburg 2000 ), but matches the range of concentrations
(10–100 "M) that are normally toxic to cells (Halliwell and Gutteridge
1999 ). Indeed, lower concentrations than this can induce random
degradation of partially deacetylated chitin and chitosan (Chang et al.
2001 ). The presence of H O  therefore provides a possible explanation
for the chitinolytic and antifungal activity we detected in R. irroratum
nectar from which proteins have been removed. A high level of H O  in
rich nectar is hypothesized to maintain it in an axenic state either by
inhibiting the growth of microorganisms or by directly killing them
(Carter and Thornburg 2004 ). However, a high level of H O  in nectar
could also become deleterious due to its instability in the presence of
metal ions and the consecutive generation of free hydroxyl radicals
(Gonzalez-Teuber et al. 2010 ); if so there must be clear benefits from
H O  in nectar to balance these costs, and the concentration of it may
be a tradeoff between costs and benefits.
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The wide variation in H O  concentrations between flowers observed in
the current study, and to a greater extent (4 "M–20 mM) by Carter and
Thornburg ( 2000 ), indicates that H O  production probably varies
between flowers, according to conditions. The early phase of plant
response to either pathogen- or plant-derived elicitors is usually
accompanied by the production of H O  (Alvarez et al. 1998 ). H O
mediates defense responses that could be induced by chitosans of
different molecular weights in rice (Lin et al. 2005 ). It is suggested that
the production of H O  in nectar might be induced by infection with
pathogens, and maintains a low level during the normal stage with no
harm to the tender tissue in floral organ. Besides any direct effects upon
pathogenic organisms, H O  also appears to be involved in signaling for
other pathogen responses. H O  has been shown to induce pathogen
response proteins including chitinase in plants (Chamnongpol et al.
1998 ; Park et al. 2004 ), and acts as a messenger to induce or increase
the transcription of genes related to the plant immune system which
could promote specific chitinase productivity (Akimoto et al. 2000 ).

In the present study, fresh untreated nectar showed higher chitinolytic
and antifungal activity against Botrytis cinerea than did protein free
nectar, especially after extended incubation times, implying both an
effect from H O  and a role for proteins such as chitinases in
chitinolysis (data not shown). Therefore, it is hypothesized that in
alkaline R. irroratum nectar both protective strategies with regard to the
antimicrobial property apply: H O  acts as the first line of defense, both
reacting with invading microbes directly and inducing the production of
PR proteins such as chitinases (most probably Rhchi3), which play an
important role in restricting microbial growth later on. However, the
possible involvement of other nectarin-generated compounds could not
be excluded.

It is interesting that we could not detect chitinase by SDS-PAGE in
floral nectar of Rhododendron delavayi, a closely related species of R.
irroratum with acidic floral nectar. The concentration of H O  and
chitinolytic activity in fresh R. delavayi nectar was one tenth lower than
in R. irroratum’s nectar (data not shown). Obviously, pronounced
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different antimicrobial mechanisms in nectar are used even by closely
related species which indicates that rapid evolution occurs.

Several classes chitinase (mainly belonging to GH family 19) were
detected as major nectarins in floral or extra-floral nectar of various
plant species as described above. Besides Rhchi3 in this study, one GH
family 18 chitinase (class III) was also detected in extra-floral nectar of
Populus trichocarpa (Escalante-Perez et al. 2012 ). Even though floral
and extrafloral nectar are quite different in function, position, origin,
nectar consumers and other aspects (Pacini and Nicolson 2007 ; Heil
2011 , 2015 ), both have adopted similar antimicrobial mechanism using
chitinases in the protection. Chitinases of both families that differ in
activity, chitin binding property, substrate specificity, and catalytic
mechanism presenting in nectar might allow plant to match different
requirements, such as various fungi or bacteria invading into nectar.

In future work we aim to test the individual roles of these proteins and
investigate the possibility that other proteins are also involved in
anti-microbial activity.
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Supplementary Fig. S1

MS spectra of identified proteins and fragments. a Rhchi2 MS spectra. b
MS/MS spectra  of  m/z  1451.65,  “GFYTYEAFI(L)AAAK” fragment  in
Rhchi2.  c  MS/MS  spectra  of  m/z  2642.2,
“TAL(I)WFWMTPQSPKPSSHDVITGR” fragment in Rhchi2. d  Rhchi3
MS  spectra.  e  MS/MS  spectra  of  m/z  1110.5,  “YGGI(L)ML(I)WDR”
fragment  in  Rhchi3.  f  MS/MS  spectra  of  m/z  1526.77,
“I(L)VNL(I)GFL(I)SAFGNFK” fragment in Rhchi3 (TIFF 2255 kb)

Supplementary Fig. S2

Comparison of Rhchi2 amino acid sequence with that of six class II plant
chitinase homologues. Amino acids, which are completely conserved are
marked with asterisks, and the highly conserved amino acids are marked
with dots or double dots. -, gap left to improve alignment. Numbers refer
to amino acid residues at the end of the respective lines. Species names
are abbreviated at the left and represent with accession number: Zmchi2
(Zea  mays,  B6SZC6),  Gmchi2  (Glycine  max,  C6TNB0),  Ntchi2
(Nicotiana tabacum, Q9ZWS3), Vvchi2 (Vitis vinifera, A5AT00), Qschi2
(Oryza sativa, Q7XCK6), Ghchi2 (Gossypium hirsutum, P931545) (DOC
105 kb)

Supplementary Fig. S3

Comparison of Rhchi3 amino acid sequence with that of six class III plant
chitinase homologues. Amino acids, which are completely conserved are
marked with asterisks, and the highly conserved amino acids are marked
with dots or double dots. -, gap left to improve alignment. Numbers refer
to amino acid residues at the end of the respective lines. Species names
are abbreviated at  the left  and represent  an accession number:  Zmchi3
(Zea  mays,  B4G1T3),  Gmchi3  (Glycine  max,  C6T8G2),  Ntchi3
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(Nicotiana tabacum, P29061),  Vvchi3 (Vitis  vinifera,  Q84S31),  Qschi3
(Oryza sativa,  Q84ZH2), Ghchi3 (Gossypium hirsutum, A2TJX5)  (DOC
110 kb)
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