2,839 research outputs found

    A Scoping Review on Generalism: core concepts to inform clinical training

    Get PDF

    Coupled coarse graining and Markov Chain Monte Carlo for lattice systems

    Get PDF
    We propose an efficient Markov Chain Monte Carlo method for sampling equilibrium distributions for stochastic lattice models, capable of handling correctly long and short-range particle interactions. The proposed method is a Metropolis-type algorithm with the proposal probability transition matrix based on the coarse-grained approximating measures introduced in a series of works of M. Katsoulakis, A. Majda, D. Vlachos and P. Plechac, L. Rey-Bellet and D.Tsagkarogiannis,. We prove that the proposed algorithm reduces the computational cost due to energy differences and has comparable mixing properties with the classical microscopic Metropolis algorithm, controlled by the level of coarsening and reconstruction procedure. The properties and effectiveness of the algorithm are demonstrated with an exactly solvable example of a one dimensional Ising-type model, comparing efficiency of the single spin-flip Metropolis dynamics and the proposed coupled Metropolis algorithm.Comment: 20 pages, 4 figure

    PCN149 DECIDING UPON NEW AND EXPENSIVE TECHNOLOGIES IN HEALTH CARE: REAL OPTIONS ANALYSIS IN PROTON THERAPY

    Get PDF

    Canonical Generations and the British Left: The Narrative Construction of the Miners’ Strike 1984–85

    Get PDF
    ‘Generations’ have been invoked to describe a variety of social and cultural relationships, and to understand the development of self-conscious group identity. Equally, the term can be an applied label and politically useful construct; generations can be retrospectively produced. Drawing on the concept of ‘canonical generations’ – those whose experiences come to epitomise an event of historic and symbolic importance – this article examines the narrative creation and functions of ‘generations’ as collective memory shapes and re-shapes the desire for social change. Building a case study of the canonical role of the miners’ strike of 1984–85 in the narrative history of the British left, it examines the selective appropriation and transmission of the past in the development of political consciousness. It foregrounds the autobiographical narratives of activists who, in examining and legitimising their own actions and prospects, (re)produce a ‘generation’ in order to create a relatable and useful historical understanding

    Scaling Laws in Human Language

    Get PDF
    Zipf's law on word frequency is observed in English, French, Spanish, Italian, and so on, yet it does not hold for Chinese, Japanese or Korean characters. A model for writing process is proposed to explain the above difference, which takes into account the effects of finite vocabulary size. Experiments, simulations and analytical solution agree well with each other. The results show that the frequency distribution follows a power law with exponent being equal to 1, at which the corresponding Zipf's exponent diverges. Actually, the distribution obeys exponential form in the Zipf's plot. Deviating from the Heaps' law, the number of distinct words grows with the text length in three stages: It grows linearly in the beginning, then turns to a logarithmical form, and eventually saturates. This work refines previous understanding about Zipf's law and Heaps' law in language systems.Comment: 6 pages, 4 figure

    Dealing with missing standard deviation and mean values in meta-analysis of continuous outcomes: a systematic review

    Get PDF
    Background: Rigorous, informative meta-analyses rely on availability of appropriate summary statistics or individual participant data. For continuous outcomes, especially those with naturally skewed distributions, summary information on the mean or variability often goes unreported. While full reporting of original trial data is the ideal, we sought to identify methods for handling unreported mean or variability summary statistics in meta-analysis. Methods: We undertook two systematic literature reviews to identify methodological approaches used to deal with missing mean or variability summary statistics. Five electronic databases were searched, in addition to the Cochrane Colloquium abstract books and the Cochrane Statistics Methods Group mailing list archive. We also conducted cited reference searching and emailed topic experts to identify recent methodological developments. Details recorded included the description of the method, the information required to implement the method, any underlying assumptions and whether the method could be readily applied in standard statistical software. We provided a summary description of the methods identified, illustrating selected methods in example meta-analysis scenarios. Results: For missing standard deviations (SDs), following screening of 503 articles, fifteen methods were identified in addition to those reported in a previous review. These included Bayesian hierarchical modelling at the meta-analysis level; summary statistic level imputation based on observed SD values from other trials in the meta-analysis; a practical approximation based on the range; and algebraic estimation of the SD based on other summary statistics. Following screening of 1124 articles for methods estimating the mean, one approximate Bayesian computation approach and three papers based on alternative summary statistics were identified. Illustrative meta-analyses showed that when replacing a missing SD the approximation using the range minimised loss of precision and generally performed better than omitting trials. When estimating missing means, a formula using the median, lower quartile and upper quartile performed best in preserving the precision of the meta-analysis findings, although in some scenarios, omitting trials gave superior results. Conclusions: Methods based on summary statistics (minimum, maximum, lower quartile, upper quartile, median) reported in the literature facilitate more comprehensive inclusion of randomised controlled trials with missing mean or variability summary statistics within meta-analyses

    Calculating Unknown Eigenvalues with a Quantum Algorithm

    Full text link
    Quantum algorithms are able to solve particular problems exponentially faster than conventional algorithms, when implemented on a quantum computer. However, all demonstrations to date have required already knowing the answer to construct the algorithm. We have implemented the complete quantum phase estimation algorithm for a single qubit unitary in which the answer is calculated by the algorithm. We use a new approach to implementing the controlled-unitary operations that lie at the heart of the majority of quantum algorithms that is more efficient and does not require the eigenvalues of the unitary to be known. These results point the way to efficient quantum simulations and quantum metrology applications in the near term, and to factoring large numbers in the longer term. This approach is architecture independent and thus can be used in other physical implementations
    • 

    corecore