187 research outputs found

    Three-boson recombination at ultralow temperatures

    Full text link
    The effects of trimer continuum resonances are considered in the three-body recombination rate of a Bose system at finite energies for large and negative two-body scattering lengths (aa). The thermal average of the rate allows to apply our formula to Bose gases at ultra-low temperatures. We found a good quantitative description of the experimental three-body recombination length of cesium atoms to deeply bound molecules up to 500 nK. Consistent with the experimental data, the increase of the temperature moves the resonance peak of the three-body recombination rate to lower values of a|a| exhibiting a saturation behavior

    Universality in Four-Boson Systems

    Full text link
    We report recent advances on the study of universal weakly bound four-boson states from the solutions of the Faddeev-Yakubovsky equations with zero-range two-body interactions. In particular, we present the correlation between the energies of successive tetramers between two neighbor Efimov trimers and compare it to recent finite range potential model calculations. We provide further results on the large momentum structure of the tetramer wave function, where the four-body scale, introduced in the regularization procedure of the bound state equations in momentum space, is clearly manifested. The results we are presenting confirm a previous conjecture on a four-body scaling behavior, which is independent of the three-body one. We show that the correlation between the positions of two successive resonant four-boson recombination peaks are consistent with recent data, as well as with recent calculations close to the unitary limit. Systematic deviations suggest the relevance of range corrections.Comment: Accepted for publication in special issue of Few-Body Systems devoted to the Sixth Workshop on the Critical Stability of Quantum Few-Body Systems, October 2011, Erice, Sicily, Ital

    Neutron19-^{19}C scattering near an Efimov state

    Full text link
    The low-energy neutron19-^{19}C scattering in a neutron-neutron-core model is studied with large scattering lengths near the conditions for the appearance of an Efimov state. We show that the real part of the elastic ss-wave phase-shift (δ0R\delta_0^R) presents a zero, or a pole in kcotδ0R k\cot\delta_0^{R}, when the system has an Efimov excited or virtual state. More precisely the pole scales with the energy of the Efimov state (bound or virtual). We perform calculations in the limit of large scattering lengths, disregarding the interaction range, within a renormalized zero-range approach using subtracted equations. It is also presented a brief discussion of these findings in the context of ultracold atom physics with tunable scattering lengths

    Neutron-19C scattering: Emergence of universal properties in a finite range potential

    Get PDF
    AbstractThe low-energy properties of the elastic s-wave scattering for the n-19C are studied near the critical condition for the occurrence of an excited Efimov state in n–n-18C. It is established to which extent the universal scaling laws, strictly valid in the zero-range limit, survive when finite range potentials are considered. By fixing the two-neutrons separation energy in 20C with available experimental data, it is studied the scaling of the real (δ0R) and imaginary parts of the s-wave phase-shift with the variation of the n-18C binding energy. We obtain some universal characteristics given by the pole-position of kcot⁡(δ0R) and effective-range parameters. By increasing the n-18C binding energy, it was verified that the excited state of 20C goes to a virtual state, resembling the neutron–deuteron behavior in the triton. It is confirmed that the analytical structure of the unitary cut is not affected by the range of the potential or mass asymmetry of the three-body system

    Dimer-atom-atom recombination in the universal four-boson system

    Full text link
    The dimer-atom-atom recombination process in the system of four identical bosons with resonant interactions is studied. The description uses the exact Alt, Grassberger and Sandhas equations for the four-particle transition operators that are solved in the momentum-space framework. The dimer-dimer and atom-trimer channel contributions to the ultracold dimer-atom-atom recombination rate are calculated. The dimer-atom-atom recombination rate greatly exceeds the three-atom recombination rate.Comment: 10 pages, 3 figures, accepted for publication in Few-Body System

    Scaling predictions for radii of weakly bound triatomic molecules

    Full text link
    The mean-square radii of the molecules 4^4He3_3, 4^4He26_2-^6Li, 4^4He27_2-^7Li and 4^4He223_2-^{23}Na are calculated using a three-body model with contact interactions. They are obtained from a universal scaling function calculated within a renormalized scheme for three particles interacting through pairwise Dirac-delta interaction. The root-mean-square distance between two atoms of mass mAm_A in a triatomic molecule are estimated to be of de order of C2/[mA(E3E2)]{\cal C}\sqrt{\hbar^2/[m_A(E_3-E_2)]}, where E2E_2 is the dimer and E3E_3 the trimer binding energies, and C{\cal C} is a constant (varying from 0.6\sim 0.6 to 1\sim 1) that depends on the ratio between E2E_2 and E3E_3. Considering previous estimates for the trimer energies, we also predict the sizes of Rubidium and Sodium trimers in atomic traps.Comment: 7 pages, 2 figure

    Efimov Trimers near the Zero-crossing of a Feshbach Resonance

    Full text link
    Near a Feshbach resonance, the two-body scattering length can assume any value. When it approaches zero, the next-order term given by the effective range is known to diverge. We consider the question of whether this divergence (and the vanishing of the scattering length) is accompanied by an anomalous solution of the three-boson Schr\"odinger equation similar to the one found at infinite scattering length by Efimov. Within a simple zero-range model, we find no such solutions, and conclude that higher-order terms do not support Efimov physics.Comment: 8 pages, no figures, final versio

    Low-Energy Universality in Atomic and Nuclear Physics

    Full text link
    An effective field theory developed for systems interacting through short-range interactions can be applied to systems of cold atoms with a large scattering length and to nucleons at low energies. It is therefore the ideal tool to analyze the universal properties associated with the Efimov effect in three- and four-body systems. In this "progress report", we will discuss recent results obtained within this framework and report on progress regarding the inclusion of higher order corrections associated with the finite range of the underlying interaction.Comment: Commissioned article for Few-Body Systems, 47 pp, 16 fig

    The ^4He trimer as an Efimov system

    Full text link
    We review the results obtained in the last four decades which demonstrate the Efimov nature of the 4^4He three-atomic system.Comment: Review article for a special issue of the Few-Body Systems journal devoted to Efimov physic

    Probing the DeltaNN component of 3He

    Full text link
    The 3He(gamma,pi^+/- p) reactions were measured simultaneously over a tagged photon energy range of 800<E_gamma<1120 MeV, well above the Delta resonance region. An analysis was performed to kinematically isolate Delta knockout events from conventional Delta photoproduction events, and a statistically significant excess of pi+p events was identified, consistent with Delta++ knockout. Two methods were used to estimate the DeltaNN probability in the 3He ground state, corresponding to the observed knockout cross section. The first gave a lower probability limit of 1.5+/-0.6+/-0.5%; the second yielded an upper limit of about 2.6%.Comment: 14 page
    corecore