11 research outputs found

    Low-scale Quintessential Inflation

    Get PDF
    In quintessential inflationary model, the same master field that drives inflation becomes, later on, the dynamical source of the (present) accelerated expansion. Quintessential inflationary models require a curvature scale at the end of inflation around 10−6MP10^{-6}M_{\rm P} in order to explain the large scale fluctuations observed in the microwave sky. If the curvature scale at the end of inflation is much smaller than 10−6MP10^{-6}M_{\rm P}, the large scale adiabatic mode may be produced thanks to the relaxation of a scalar degree of freedom, which will be generically denoted, according to the recent terminology, as the curvaton field. The production of the adiabatic mode is analysed in detail in the case of the minimal quintessential inflationary model originally proposed by Peebles and Vilenkin.Comment: 25 pages; 5 figure

    Observational constraints on the curvaton model of inflation

    Get PDF
    Simple curvaton models can generate a mixture of of correlated primordial adiabatic and isocurvature perturbations. The baryon and cold dark matter isocurvature modes differ only by an observationally null mode in which the two perturbations almost exactly compensate, and therefore have proportional effects at linear order. We discuss the CMB anisotropy in general mixed models, and give a simple approximate analytic result for the large scale CMB anisotropy. Working numerically we use the latest WMAP observations and a variety of other data to constrain the curvaton model. We find that models with an isocurvature contribution are not favored relative to simple purely adiabatic models. However a significant primordial totally correlated baryon isocurvature perturbation is not ruled out. Certain classes of curvaton model are thereby ruled out, other classes predict enough non-Gaussianity to be detectable by the Planck satellite. In the appendices we review the relevant equations in the covariant formulation and give series solutions for the radiation dominated era.Comment: Minor changes and corrections to match version accepted by PR

    Curvatons in Supersymmetric Models

    Full text link
    We study the curvaton scenario in supersymmetric framework paying particular attention to the fact that scalar fields are inevitably complex in supersymmetric theories. If there are more than one scalar fields associated with the curvaton mechanism, isocurvature (entropy) fluctuations between those fields in general arise, which may significantly affect the properties of the cosmic density fluctuations. We examine several candidates for the curvaton in the supersymmetric framework, such as moduli fields, Affleck-Dine field, FF- and DD-flat directions, and right-handed sneutrino. We estimate how the isocurvature fluctuations generated in each case affect the cosmic microwave background angular power spectrum. With the use of the recent observational result of the WMAP, stringent constraints on the models are derived and, in particular, it is seen that large fraction of the parameter space is excluded if the Affleck-Dine field plays the role of the curvaton field. Natural and well-motivated candidates of the curvaton are also listed.Comment: 34 pages, 5 figure

    Towards a Gravity Dual for the Large Scale Structure of the Universe

    No full text
    The dynamics of the large-scale structure of the universe enjoys at all scales, even in the highly non-linear regime, a Lifshitz symmetry during the matter-dominated period. In this paper we propose a general class of six-dimensional spacetimes which could be a gravity dual to the four-dimensional large-scale structure of the universe. In this set-up, the Lifshitz symmetry manifests itself as an isometry in the bulk and our universe is a four-dimensional brane moving in such six-dimensional bulk. After finding the correspondence between the bulk and the brane dynamical Lifshitz exponents, we find the intriguing result that the preferred value of the dynamical Lifshitz exponent of our observed universe, at both linear and non-linear scales, corresponds to a fixed point of the RGE flow of the dynamical Lifshitz exponent in the dual system where the symmetry is enhanced to the Schrodinger group containing a non-relativistic conformal symmetry. We also investigate the RGE flow between fixed points of the Lifshitz dynamical exponent in the bulk and observe that this flow is reflected in a growth rate of the large-scale structure, which seems to be in qualitative agreement with what is observed in current data. Our set-up might provide an interesting new arena for testing the ideas of holography and gravitational duals.The dynamics of the large-scale structure of the universe enjoys at all scales, even in the highly non-linear regime, a Lifshitz symmetry during the matter-dominated period. In this paper we propose a general class of six-dimensional spacetimes which could be a gravity dual to the four-dimensional large-scale structure of the universe. In this set-up, the Lifshitz symmetry manifests itself as an isometry in the bulk and our universe is a four-dimensional brane moving in such six-dimensional bulk. After finding the correspondence between the bulk and the brane dynamical Lifshitz exponents, we find the intriguing result that the preferred value of the dynamical Lifshitz exponent of our observed universe, at both linear and non-linear scales, corresponds to a fixed point of the RGE flow of the dynamical Lifshitz exponent in the dual system where the symmetry is enhanced to the Schrodinger group containing a non-relativistic conformal symmetry. We also investigate the RGE flow between fixed points of the Lifshitz dynamical exponent in the bulk and observe that this flow is reflected in a growth rate of the large-scale structure, which seems to be in qualitative agreement with what is observed in current data. Our set-up might provide an interesting new arena for testing the ideas of holography and gravitational duals.The dynamics of the large-scale structure of the universe enjoys at all scales, even in the highly non-linear regime, a Lifshitz symmetry during the matter-dominated period. In this paper we propose a general class of six-dimensional spacetimes which could be a gravity dual to the four-dimensional large-scale structure of the universe. In this set-up, the Lifshitz symmetry manifests itself as an isometry in the bulk and our universe is a four-dimensional brane moving in such six-dimensional bulk. After finding the correspondence between the bulk and the brane dynamical Lifshitz exponents, we find the intriguing result that the preferred value of the dynamical Lifshitz exponent of our observed universe, at both linear and non-linear scales, corresponds to a fixed point of the RGE flow of the dynamical Lifshitz exponent in the dual system where the symmetry is enhanced to the Schrödinger group containing a non-relativistic conformal symmetry. We also investigate the RGE flow between fixed points of the Lifshitz dynamical exponent in the bulk and observe that this flow is reflected in a growth rate of the large-scale structure, which seems to be in qualitative agreement with what is observed in current data. Our set-up might provide an interesting new arena for testing the ideas of holography and gravitational duals

    Minimal supersymmetric standard model flat direction as a curvaton

    Get PDF
    We study in detail the possibility that the flat directions of the Minimal Supersymmetric Standard Model (MSSM) could act as a curvaton and generate the observed adiabatic density perturbations. For that the flat direction energy density has to dominate the Universe at the time when it decays. We point out that this is not possible if the inflaton decays into MSSM degrees of freedom. If the inflaton is completely in the hidden sector, its decay products do not couple to the flat direction, and the flat direction curvaton can dominate the energy density. This requires the absence of a Hubble-induced mass for the curvaton, e.g. by virtue of the Heisenberg symmetry. In the case of hidden radiation, n=9n=9 is the only admissible direction; for other hidden equations of state, directions with lower nn may also dominate. We show that the MSSM curvaton is further constrained severely by the damping of the fluctuations, and as an example, demonstrate that in no-scale supergravity it would fragment into QQ balls rather than decay. Damping of fluctuations can be avoided by an initial condition, which for the n=9n=9 direction would require an initial curvaton amplitude of ∌10−2Mp\sim 10^{-2}M_p, thereby providing a working example of the MSSM flat direction curvaton

    WMAP, neitrino degeneracy and non-Gaussianity contraints on, isocurvature perturbations in the curvaton model of inflation

    No full text
    In the curvaton model of inflation, where a second scalar field, the “curvaton,” is responsible for the observed inhomogeneity, a nonzero neutrino degeneracy may lead to a characteristic pattern of isocurvature perturbations in the neutrino, cold dark matter and baryon components. We find that the current data can only place upper limits on the level of isocurvature perturbations. These can be translated into upper limits on the neutrino degeneracy parameter. In the case that lepton number is created before curvaton decay, we find that the limit on the neutrino degeneracy parameter is comparable with that obtained from big-bang nucleosynthesis. For the case that lepton number is created by curvaton decay we find that the absolute value of the non-Gaussianity parameter, |fnl|, must be less than 10 (95% confidence interval)

    Models of inflation liberated by the curvaton hypothesis

    No full text
    It is usually supposed that inflation is of the slow-roll variety and that the inflaton generates the primordial curvature perturbation. According to the curvaton hypothesis, inflation need not be slow-roll, and if it is, the inflaton generates a negligible curvature perturbation. We find that the construction of slow-roll inflation models becomes much easier under this hypothesis. Also, thermal inflation followed by fast-roll becomes viable, with no slow-roll inflation at all
    corecore