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Low-scale quintessential inflation
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In the quintessential inflationary model, the same master field that drives inflation becomes, later on, the
dynamical source of the~present! accelerated expansion. Quintessential inflationary models require a curvature
scale at the end of inflation around 1026MP in order to explain the large scale fluctuations observed in the
microwave sky. If the curvature scale at the end of inflation is much smaller than 1026MP, the large scale
adiabatic mode may be produced thanks to the relaxation of a scalar degree of freedom, which will be
generically denoted, according to the recent terminology, as the curvaton field. The production of the adiabatic
mode is analyzed in detail in the case of the minimal quintessential inflationary model originally proposed by
Peebles and Vilenkin.
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I. INTRODUCTION

Following the discovery@1,2# that distant supernovas ar
fainter than inferred from local samples, models of sca
fields that are able to develop a negative pressure at
present time have been proposed. These scalar fields
interact gravitationally and they have been generica
named quintessence@3–8#.

In recent years, an interesting class of quintessence m
els has been proposed by Peebles and Vilenkin@9# ~see also
@10#!.1 The peculiar feature of quintessential inflation is th
the master field that drove inflation becomes again domin
at the present time. Hence, in the context of quintessen
inflation, the inflaton and the quintessence field are identi
in a single scalar degree of freedom, driving inflation in t
past and acting as quintessence today. A simple examp
this dynamics is represented by ‘‘dual’’ potentials@9# going
as a powerduring inflation and as an inverse powerafter @4#
inflation. Owing to this dual form of the potential, the d
namics of the background will experience, right after infl
tion, a pretty long phase in which the potential term is su
leading with respect to the kinetic term. In quintessen
inflation the reheating can be entirely gravitational, since
energy density in the light quanta produced at the end
inflation decreases slower than the~kinetic-energy-
dominated! background geometry@9,12#.

Quintessential inflationary models are consistent with
servations provided the curvature scale at the end of infla
is not too low andO;(1026MP). In the present paper
complementary possibility will be analyzed. Consider t
situation whereHe, the curvature scale at the end of infl
tion, is indeed much smaller than 1026MP. Along this line
we suppose, for simplicity, that during inflation there is d
gree of freedomc which is not coupled with the inflaton
field and remains constant, thanks to its potential, during
later stages of inflation. The~potential! energy density ofc

*Electronic address: massimo.giovannini@cern.ch
1The early ‘‘history’’ of the identification between the inflaton an

the quitessence field can be found in@11#. In addition to @3,4#,
relevant references are, in this context,@12# and @13#.
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is subleading with respect to the energy density ofw. At the
end of inflation, during the kinetic phase, the large sc
fluctuations ofc will be converted into adiabatic fluctua
tions. This possibility has recently been studied by ma
authors@14–20# in different contexts, and it was originally
invoked in@21#. As discussed in@22#, even the simplest cha
otic inflationary models develop new constraints when co
bined with the curvaton idea. The purpose of the pres
paper is to analyze low-scale quintessential inflation in a s
cific setup, which is the one originally suggested by Peeb
and Vilenkin in @9#. In this model the late-time behavior o
the quintessential evolution does not show the tracking
havior of the inflaton and matter mass densities, as argue
@7#.

Particular attention will be given to the evolution of th
fluctuations. This is quite essential since, by lowering
curvature scale at which inflation ends, we have to make s
that the isocurvature mode ofc is efficiently turned into an
adiabatic one. While in ordinary inflationary models~such as
those analyzed, for instance, in@22#! the radiation-dominated
phase starts at the end of inflation, in quintessential inflat
the evolution may be very different and the onset of t
radiation-dominated phase is delayed. One of the purpose
the present paper is indeed to generalize the analysis o
curvaton evolution to backgrounds where inflation is not i
mediately followed by a radiation-dominated phase. The c
vature perturbation will be followed through all the stages
the model and its final value computed. This analysis will
performed both analytically and numerically.

The plan of the present paper is the following. In Sec
the constraints on the post-inflationary evolution will be d
rived in the specific case where the inflaton and quintesse
field are identified. In Sec. III the constraints pertaining
the quintessential evolution will be scrutinized. Section
contains the basic ingredients for the evolution of the flu
tuations. Sections V and VI deal with the conversion of t
initial isocurvature mode into an adiabatic one. In Sec. V
initial and the kinetic stages will be scrutinized, while Se
VI is more oriented towards the phase wherec dominates
and eventually decays. In Sec. VII some concluding rema
will be presented.
©2003 The American Physical Society12-1
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II. FROM INFLATION TO QUINTESSENCE

Consider the minimal realization of a low-scale quinte
sential inflationary model extending the original proposal
@9#:

MP
2H25F ẇ2

2
1

ċ2

2
1V~w!1W~c!G , ~2.1!

MP
2~H21Ḣ !5@2ẇ22ċ21V~w!1W~c!#, ~2.2!

ẅ13Hẇ1
]V

]w
50, ~2.3!

c̈13Hċ1
]W

]c
50. ~2.4!

The potential ofw can be chosen to be a typical power la
during inflation and aninversepower during the quintessen
tial regime:

V~w!5l~w41M4!, w,0,

V~w!5
lM8

w41M4
, w>0, ~2.5!

where l is the inflaton self-coupling andM is the typical
scale of quintessential evolution.

The field c is subleading during inflation and it is cha
acterized by a potential, which we will take, for simplicity,
be quadratic, i.e.

W~c!5
m2

2
c2. ~2.6!

This setup can be generalized to the case where the fieldc is
replaced by an arbitrary number of scalar degrees of free
c i .

Inflation ends whenV(w);lMP
4 at a curvature scaleHe

Al.
He

MP
. ~2.7!

In ordinary inflationary models, the large scale inhomoge
ities determining the Cosmic microwave background~CMB!
anisotropies come from the Gaussian fluctuations of the
flaton w, and, consequently,l;10213 @9#. In the present
investigation a complementary possibility will be discuss
namely the case when

He!1026MP. ~2.8!

In this case the fluctuations ofw are too small to be interest
ing for CMB physics. However, this conclusion can
evaded by taking into account the fluctuations of the fieldc.
Qualitatively the picture is the following. Right after infla
tion, the fluctuations of the geometry will be determined
the fluctuations both ofw and c. Because of Eq.~2.8!, the
metric fluctuations generated byw will vanish atte. In other
12351
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words, the initial conditions for the system atte will be of
isocurvature type. Later on, the isocurvature mode can
converted into an adiabatic one. This is the idea explored,
instance, in@14,15#. In the usual picture of curvaton evolu
tion, right after inflation, radiation takes place immediate
In the case of quintessential inflation, on the contrary,
onset of the radiation-dominated epoch may be delay
Hence, the analysis of the evolution of the fluctuations m
be repeated, with particular attention to the different featu
of the model.

During inflation, the fieldc is subdominant with respec
to the inflaton energy density,

W~c!!V~w!. ~2.9!

The fieldc remains nearly constant during the later stages
inflation, i.e. c;ce. At the end of inflation, Eq.~2.9! im-
plies that

S m

MP
D!A2S He

ce
D . ~2.10!

After the end of inflation, because of the inverse pow
law form of the potential, the fieldw is mainly driven by its
kinetic energy and the approximate solution of the ba
ground geometry will be of the type

w5A2MPlnS a

ae
D , ~2.11!

with a(t);t1/3. In this phase the potential,V(w)
;l(M /MP)

4ln24(a/ae), is subleading sincel!10213 and
M!MP. More specifically, phenomenological conside
ations related to the present dominance ofw ~see Sec. III!
suggest thatM!1029MP.

While the background is dominated byẇ2, the field c
slightly decreases with a rate given byW,c . From Eq.~2.4!,
the fieldc slowly rolls toward the minimum of its potentia
in a kinetic-energy-dominated environment and its appro
mate equation obeys

ċ.2
1

6H

]W

]c
, ~2.12!

where the factor 1/6 comes from dropping consistently
terms of Eq.~2.4! containing more than one derivative of th
potential. This type of approximation has been exploited
@16#, but in the case of a slow-roll occurring during the r
diation epoch.

Using Eq.~2.12!, and recalling thata(t);t1/3, it can be
checked that the evolution ofc slightly deviates from a con-
stant value. For instance, in the case of a quadratic pote
the solution of Eq.~2.12! can be written as

c~ t !.ceF12
m2

4
~ t22te

2!G . ~2.13!

Equation~2.12! is useful in the case when the potential
more complicated than the quadratic ansatz of Eq.~2.6!
where Eq.~2.4! can be solved exactly. In fact, during th
2-2
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kinetic regime the curvature scale decreases, and wheH
;Hosc;m the fieldc, still subdominant, will start oscillat-
ing. The case of massive potential allows analytical soluti
of Eq. ~2.4! during the kinetic phase forc:

c5ce

At

a3/2J0~mte!
J0~mt!, ~2.14!

which leads to Eq.~2.12! in the limit mt!1 and mte!1.
Sincec decays asa23/2 during the oscillating regime, it will
become dominant with respect to the kinetic energy ofw at a
scale

Hd;5 mS ce

MP
D 2

. ~2.15!

The fieldc eventually decays at a curvature scale

H r;
m3

MP
2

. ~2.16!

At Hm the potential ofw is still subdominant with respect t
the kinetic energy. In fact

V~wm!;lM4S M

MP
D 4

ln24S He

m D
!

ẇm
2

2
.

1

9 S MP
2

m2 D , ~2.17!

where the last equality comes from the kinetic term ofw at
tm, evaluated on the basis of Eq.~2.11!. An example of the
numerical integration is reported in Fig. 1. Furthermore,
analytical evolution ofc, as reported in Eq.~2.14!, is in
excellent agreement with the numerical results.

BetweenHd andH r ,

S ad

ar
D.S m

ce
D 2

, ~2.18!

the background geometry is effectively dominated by the
cillations of c, i.e. a(t);(mt)2/3.

It is interesting to combine in the physical picture t
constraints and the requirements introduced so far. Acc
ing to Eqs.~2.15! and ~2.16! the quintessence field may be
come subdominant either prior to or after the decay ofc. In
Fig. 2, with the~diagonal! dashed line, the condition comin
from the interplay between the decay ofc and the domi-
nance ofw is illustrated for the specific caseHe;1029MP.
Above the dashed line,c decays during the kinetic phas
Below the dashed line, the decay occurs whenc already
dominates. The requirement of Eq.~2.10! also imposes a
constraint on Fig. 2, implying thatce and the mass should li
below the full fine in the right-hand corner. Consider now t
situation where the fluctuations ofc are amplified, during
inflation, with a scale-invariant spectrum. Therefore, den
ing by xc the fluctuation ofc, we do know that the powe
spectrum will bedxc

;He/2p. If
12351
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MP
,2p

ce

MP
, ~2.19!

then the fluctuations ofc will be predominantly Gaussian. In
the opposite case they will have some non-negligible n
Gaussian component. In order to have a nearly sc
invariant spectrum forxc , m should always be smaller tha
the curvature scaleHe. More precisely, looking at the evo
lution equation forxc ~in conformal time! we are led to
require

m,A2He. ~2.20!

Equation~2.20! is illustrated in Fig. 2 with the dotted hori
zontal line. Finally, since the decay ofc should occur prior
to BBN, an absolute lower bound onm, i.e. m.10 TeV,
should be imposed. Therefore, already from these consi
ations it is possible to say that the dashed area in Fig.
allowed. Thus, the quintessence field has to become

FIG. 1. The result of the numerical integration of the bac
ground is illustrated for different values of the parameters~indicated
above each curve!.
2-3
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dominant before the decay ofc if we want xc to be Gauss-
ian with a nearly scale-invariant spectrum.

III. QUINTESSENTIAL EVOLUTION

In order to satisfy the physical constraints for the cons
tency of the scenario, it is reasonable to require that
decay ofc occur whenw is already subdominant. If this i
the situation,Hd.H r and, consequently,

ce*
1

A5
m. ~3.1!

It is important, for the purposes of the present investigati
to analyze in some detail, the evolution ofw around the
curvature scalesHd andH r .

After Hd , the evolution ofw results from the interplay
between the smallness of its potential termV(w) and the
coherent oscillations ofc, which tend to make the averag
expansion matter-dominated. The effect of the potential
however, to introduce a growing mode in the evolution ofw.
This growing mode can be estimated by solving Eq.~2.3!
with the inverse power-law potential of Eq.~2.5!. The solu-
tion is

wg~ t !.31/3 l1/6M4/3t1/3, td,t,t r . ~3.2!

For t.t r , when the Universe is effectively radiation
dominated, a similar solution holds:

wg~ t !.S 72

5 D 1/6

l1/6M4/3t1/3, t.t r . ~3.3!

FIG. 2. The quantitative constraints pertaining to the combin
analysis of the evolution ofc and w during the kinetic phase ar
illustrated. With the dashed line the constraint coming from
dominance ofc is reported. The dot-dashed lines~from top to bot-
tom! represent, respectively, the bound~2.20! and the big bang
nuclearynthesis~BBN! bound. The full~vertical! line refers to Eq.
~2.19!. The shaded region defines the allowed portion of the par
eter space of the model.
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The effective evolution ofw depends upon the balance
the growing mode with the decaying modes obtained fr
Eq. ~2.3! when the potential is neglected. During the regim
where c dominates and in the subsequent radiatio
dominated regime, the evolution ofw is given, respectively,
by

wd~ t !.
A2MP

3 H F lnS td

te
D11G2

td

t J ,

td,t,t r , ~3.4!

w r~ t !.
A2 MP

3 H F lnS td

te
D111

td

t r
G22

td

t r
At r

t J ,

t.t r . ~3.5!

Equations~3.4! and~3.5! are continuous int r . Furthermore
Eqs.~2.11! and~3.4! are continuous intd . As obtained in@9#
the growing solution never comes to dominate against
decreasing mode. If

l21/2ln3S td

te
D S MP

M D 4

.S H0

MP
D 21

, ~3.6!

the growing mode becomes dominant onlyafter the present
expansion timet0;H0

21. We will see that this condition is
always verified because of the smallness ofl.

After t r the quintessence field is nearly constant and
potential energy is given by

V~w r!.l
M8

MP
4 F lnS td

te
D G24

. ~3.7!

The condition that the potential energy in the quintesse
field is comparable with the present energy density,

V~w r!.H0
2MP

2 , ~3.8!

fixes a relation amongM andl

M

MP
.S 9

2D 21/4S H0

MP
D 1/4

3l21/8H lnFAl

5 S MP

m D S MP

ce
D 2G J 1/2

. ~3.9!

Note that, for the typical parameters discussed so far,M is
always greater than 105 GeV.

IV. LARGE SCALE FLUCTUATIONS

Having discussed the main features of the po
inflationary evolution, it is now mandatory to understand t
behavior of the fluctuations. Available calculations on t
curvaton dynamics in different models@14–20# always deal
with a post-inflationary phase, which is dominated by rad
tion. Here, as discussed in the previous sections, the scen
is different. Right after inflation the background evolution

d

e

-
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not determined by radiation but by the dynamics ofw, whose
potential is now very steep. The fluctuation of the met
induced by the fluctuations ofw will be, at the onset of the
post-inflationary epoch, very small sinceHe,1026MP.
Hence, had we to classify the metric fluctuations atte, we
would say that their modes are of the isocurvature ty
However, as time goes by, the curvature fluctuations, initia
negligible atte, will be driven to a constant value so tha
much later, the initial isocurvature mode turns into an ad
batic one.

In order to describe this picture quantitatively, we are
to consider the coupled system formed by the fluctuation
the metric and by the fluctuations ofw andc. The fluctua-
tions will then be discussed in the longitudinal gauge, wh
it is particularly simple to relate the gauge-dependent qu
tities to gauge-invariant observables@23,24#.
io
-
th
-
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In the longitudinal gauge, the nonvanishing entries of
perturbed metric are

dg0052f, dgi j 522a2f, ~4.1!

where we used the fact that the fluctuations of the ener
momentum tensor are free of shear. For the fluctuations ow
andc, in the longitudinal gauge the following notation wi
also be adopted:

w→w1dw, dw5xw ,

c→c1dc, dc5xc . ~4.2!

With these notations the evolution equations of the fluct
tions can be written as
f̈14Hḟ1~2Ḣ13H2!f52
3

2MP
2 F ~ ẇ21ċ !2f2~ ċẋc1ẇẋw!1

]V

]w
xw1

]W

]c
xcG , ~4.3!

3H~Hf1ḟ !2
1

a2
¹2f52

3

2MP
2 F2~ ẇ21ċ !2f1~ ċẋc1ẇẋw!1

]V

]w
xw1

]W

]c
xcG , ~4.4!

ẍw13Hẋw2
1

a2
¹2xw1

]2V

]w2
xw24ẇḟ12

]V

]w
f50, ~4.5!

ẍc13Hẋc2
1

a2
¹2xc1

]2W

]c2
xc24ċḟ12

]W

]c
f50, ~4.6!
an
f
he

ges
where Eqs.~4.3! and~4.4! come, respectively, from the (i , j )
and (0,0) components of the perturbed Einstein equat
and Eqs.~4.5! and ~4.6! describe the evolution of the inho
mogeneities in the inflaton or quintessence field and in
curvaton field. Equations~4.3!–~4.6! are subjected to the mo
mentum constraint

Hf1ḟ5
3

2MP
2 ~ ẇxw1ċxc!. ~4.7!

Using Eq.~4.7! together with Eqs.~4.3!–~4.6!, it is possible
to obtain a nicer form of the perturbation equations@25–
27,29#:

v̈w13H v̇w2
1

a2
¹2vw1F ]2V

]w2
2

3

MP
2a3

]

]t S a3

H
ẇ2D Gvw

2
3

MP
2a3

]

]t S a3

H
ẇċ D vc50, ~4.8!
ns

e

v̈c13H v̇c2
1

a2
¹2vc1F ]2W

]c2
2

3

MP
2a3

]

]t S a3

H
ċ2D Gvc

2
3

MP
2a3

]

]t S a3

H
ẇċ D vw50, ~4.9!

where

vw5xw1
ẇ

H
f, ~4.10!

vc5xc1
ċ

H
f. ~4.11!

Equations~4.8! and~4.9! can be generalized to the case of
arbitrary number of fields@25,26#: in this case the number o
equations will clearly match the number of fields but t
relative structure of the equations will be the same.

Equations ~4.4!–~4.6! or, equivalently, Eqs.~4.8! and
~4.9!, have to be studied and solved along the different sta
of the evolution of the background. In terms ofvw andvc ,
the spatial curvature perturbation can be written as
2-5
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z52
H

ẇ21ċ2
@ẇvw1ċvc#. ~4.12!

The variablez is related also tof by the usual expression

z5
H

Ḣ
~Hf1ḟ !2f. ~4.13!

Equation ~4.13! can be obtained from Eq.~4.12! ~or vice
versa! by using the momentum constraint~4.7! expressed in
terms of thevw andvc given in Eqs.~4.10! and ~4.11!.

An interesting~complementary! strategy in order to solve
the system~4.3!–~4.6! and~4.7! is to write down directly the
evolution equation forz. Mutiplying Eq. ~4.4! by the sound
of speed and subtracting it from Eq.~4.3! we obtain, at large
scales@28#,

dz

dt
52

H

ċ21ẇ2
dpnad, ~4.14!

wheredpnad is, in our case,

dpnad5~cs
221!f~ẇ1ċ !1~12cs

2!~ ẇẋw1ċẋc!

2~11cs
2!S ]V

]w
xw1

]W

]c
xcD , ~4.15!

with

cs
25

ṗ

ṙ
511

2

3H~ ẇ21ċ2!
S ]V

]w
ẇ1

]W

]c
ċ D . ~4.16!

In the first equality of Eq.~4.16! p and r are, respectively,
the total pressure and energy density of the system writte
terms of the two background fieldsw andc. Notice that in
order to get to Eq.~4.16! the background equations of mo
tion ~2.1!–~2.4! have been used.

The initial conditions of the system~4.4!–~4.6! after the
end of inflation are dictated by the smallness ofl. Going to
Fourier space and considering only the super-horizon sca
the initial conditions of the system are, forl!10214,

f~k,te!50, xw~k,te!50, xc~k,te!5
He

2p
. ~4.17!

In terms ofvw andvc , we have at the end of inflation, from
Eqs.~4.8! and ~4.9!, on super-horizon scales,

vw~k,te!50, vc~k,te!5xc~k,te!, ~4.18!

as is made clear by inserting Eqs.~4.17! into Eqs.~4.8! and
~4.9!. Physically Eqs.~4.17! and ~4.18! guarantee the ab
sence of adiabatic modes atte. This aspect can also be ap
preciated by looking at the initial conditions forz

z~k,te!50, ~4.19!

as they follow from Eq.~4.12!.
12351
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V. EVOLUTION DURING THE KINETIC PHASE

Using the initial conditions given by Eqs.~4.17!–~4.19!,
the evolution of the fluctuations can be solved in sligh
different but, ultimately, equivalent ways. In the following
as a first step, the asymptotes for the evolution of the fl
tuations will be discussed analytically in the vicinity ofte.
The consistency of the analytical solutions with the results
the numerical integration is an important check to be do
Following recent techniques developed in a different fram
work @16#, the solutions in the vicinity ofte can be obtained
without specifying the form of the potential for the fieldc.
Later on, in order to perform the numerical integration, t
case of massive potential will be mainly discussed.

A. The initial stages around te for generic potential

During this phase the fieldc slowly rolls down its own
potentialW(c), and the solution to Eq.~2.4! is given by Eq.
~2.12!. The same expansion in the gradients of the poten
W(c) can be used in order to get the approximate evolut
of the fluctuations.

Equations ~4.8! and ~4.9! can then be approximatel
solved by keeping the leading terms in the derivatives
W(c). As done in the case of the background evolution,
equation analogous to Eq.~2.12! can also be obtained for th
canonical perturbation variablevc . Equation~4.9! can then
be expanded in gradients of the potential leading to the
lowing approximate equation:

v̇c52
1

6H

]2W

]c2
vc , ~5.1!

whose solution implies thatvc is approximately constant
For instance, inserting into Eq.~5.1! the explicit expression
for W(c) given in Eq.~2.6!, we get

vc~k,t !.vc~k,te!F12
m2

4
~ t22te

2!G , t,tm. ~5.2!

This expression has been verified numerically for vario
values of the physical parameters. Using Eq.~5.2!, Eq. ~4.8!
can be solved in the same approximation. Note, in fact, t
in Eq. ~4.8! the term in square brackets is subleading w
respect to the other terms for two separate reasons. FirstV,ww

is negligible in its own right, given the smallness ofl and
recalling thatM /MP is O(10213). Second, sincea3ẇ2/H is
constant, its time derivative appearing in Eq.~4.8! is also
negligible. The approximate evolution ofvw(k,t) is then
given, at large scales, by

v̈w13H v̇w2
3

MP
2a3

]

]t S a3

H
ẇċ D vc50, ~5.3!

whose solution, using Eqs.~2.12! and ~5.1!, becomes

vw~k,t !.2
3

4MP
2 S ẇ

H
D ]W

]c
vc~k,t !@a6~ t !2a6~ te!#.

~5.4!
2-6
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Given that during the kinetic phaseẇ.H, then vw(k,t)
}a6. Again, in the case of Eq.~2.6!, from Eq. ~5.4! we
obtain

vw~k,t !.2
3A2

4 S ce

MP
Dm2~ t22te

2!xc~k,te!, ~5.5!

where, according to Eq.~4.18!, vc(k,te)5xc(k,te) has been
used. With the results of Eqs.~5.2! and ~5.5!, from Eqs.
~4.10!–~4.12! we can also obtain the approximate form of t
evolution offk(t), zk(t), andxw(k,t):

zk~ t !.
3

2MP
2

]W

]c
xc~k,te!@a6~ t !2a6~ te!#, ~5.6!

fk~ t !.2
3

10
zk~ t !, ~5.7!

xw~k,t !.2
3

10MP
2 S ẇ

H
D ]W

]c
xc@a6~ t !2a6~ te!#. ~5.8!

The same results derived in Eqs.~5.6!–~5.8! and based on
the solution of Eqs.~4.8! and~4.9!, with the initial conditions
dictated by Eq.~4.18!, can be obtained by integrating Eq
~4.4!–~4.6!. As a check of the consistency of the approach
is in fact useful to insert Eqs.~5.7! and ~5.8! back into Eqs.
~4.3!–~4.6! and see that they are satisfied during the kine
phase and prior to the oscillations ofc. Furthermore, the
evolution of zk , as obtained in Eq.~5.6!, can be also ob-
tained directly from Eq.~4.14!. In fact, during the kinetic
phaseċ!ẇ and, from Eq.~4.16! evaluated in the kinetic
limit:

cs
2.12

1

18MP
2H4

]W

]c
. ~5.9!

Hence, from Eq.~4.15! we find

dpnad522
]W

]c
xc . ~5.10!

Inserting Eq.~5.10! into Eq. ~4.14! and performing the inte-
gral, we get exactly Eq.~5.6!. The analytic expressions de
rived so far allow a full control of the initial conditions of th
system in the vicinity ofte.

B. Evolution for teËtËtd

After the onset of the kinetic phase atte, but before the
dominance ofc at td , the evolution of the system can b
solved numerically for various sets of initial conditions;
example of this behavior is reported in Fig. 3 for the case
the potential given in Eq.~2.6!.

It will now be shown that the numerical evolution can
very accurately reproduced analytically by direct integrat
of the evolution equation in a well defined approximati
scheme. The evolution of the fluctuations will be analyz
first using Eqs.~4.8! and ~4.9! and then using directly the
12351
it

c

f

n

d

evolution equation forz, i.e. Eq.~4.14!.
In the case of the potential~2.6!, Eqs.~4.8! and~4.9! can

be written as

d

dt
~a3v̇w!52

3A2

MP
m2cvc , ~5.11!

v̈c13H v̇c1m2F11
6

HMP
2
ċcGvc

1
3A2

MP
m2cvw50, ~5.12!

where Eqs.~2.11! and ~2.4! have been used. Recalling no
the exact solution for the evolution of Eq.~2.4!, i.e. Eq.
~2.14!, it can be easily checked that, in Eq.~5.12!:

FIG. 3. The result of the numerical integration for the evoluti
of the fluctuations is illustrated for the caseM /MP510213 and for
a set of fiducial parameters chosen within the shaded region of
2. In the left plot the analytical results~dashed lines! obtained in
Eqs.~5.14!, ~5.17! and~5.19! are compared with the numerical one
~full lines!.
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6

HMP
2
ċc;

18t

M P
2

ce
2m,1 ~5.13!

for t,td;m21(MP/ce)
2. Neglecting the term containingvw

in Eq. ~5.12!, the solution for the evolution ofvc is given by

vc~k,t !5
vc~k,te!

J0~xe!
J0~x!, ~5.14!

where x5mt and J0(x) is the Bessel function of order
@30#. Equation~5.14! reproduces exactly the numerical sol
tions forvc reported, for a particular case, in Fig. 3. Since
is always true thatmte!1 for the constraints displayed i
Fig. 2, the interesting limits of Eq.~5.14! are formt!1 and
mt@1. In the limit mt!1, Eq. ~5.14! reproduces, as i
should, the time dependence obtained in Eq.~5.2!. For mt
@1 we have@30#, from Eq. ~5.14!:
b

d

12351
t

vc~k,t !5vc~k,te!A 2

px
cosS x2

p

4 D . ~5.15!

Note the similarity between Eqs.~5.14! and~2.14!, which is
a simple consequence of the quadratic form of the poten

Inserting now Eq.~5.14! in Eq. ~5.11!, and integrating a
first time betweente and a generic timet we get

dvw

dx
52

3A2

2MP

cevc~k,te!

J0~xe!
Fx@J0

2~x!

1J1
2~x!#2

F~xe!

x G , ~5.16!

whereF(xe)5xe
2@J0(xe)

21J1(xe)
2#.

Direct integration of Eq.~5.16! implies that
vw~k,x!52
3A2

4

cevc~k,te!

J0~xe!
2

$x2@J0
2~x!12J1

2~x!2J0~x!J2~x!#2G~xe!22F~xe!%, ~5.17!
na-

as
set
ions
the

full
d

d
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e
fla-
n-

s

ed

s

where G(xe)5xe
2@J0

2(xe)12J1
2(xe)2J0(xe)J2(xe)# and

where, as usual,xe;m/He. Taking the limit for largex of
Eq. ~5.17! the following result can be obtained:

vw~k,t !52
6A2

p
cevc~k,te!~mt!

1
3A2

4
cevc~k,te!~mte!

2ln
t

te
, ~5.18!

showing off the linear growth ofvw with time.
Inserting now the solutions forvc andvw given, respec-

tively, in Eqs.~5.14! and~5.17! into Eq.~4.12!, the evolution
of z for t,td turns out to be, formt.1,

z~k,t !.
6

p S ce

MP
D Fvc~k,te!

MP
G~mt!. ~5.19!

Note that, fort5td , Eq. ~5.19! gives

z~k,td!5
2

5p S vc~k,te!

ce
D . ~5.20!

Using the result of Eq.~5.19! into Eq. ~4.13! the evolution
for the large-scale modes of the metric fluctuations can
obtained:

f~k,t !.2
18

7p S ce

MP
D Fvc~k,te!

MP
G~mt!. ~5.21!

Again we verified that the same results can be obtained
rectly by integrating the Hamiltonian constraint~4.4!.
e

i-

The time has come to compare the accuracy of the a
lytical expressions derived in Eqs.~5.14!, ~5.17! and ~5.19!.
These expressions have been plotted in Fig. 3~left plot! with
the dashed lines. For the same set of parameters~and with
the full line! the outcome of the numerical integration h
been reported. In the right plot the results for a different
of parameters are displayed. The analytical express
match rather accurately the numerical results. Notice that
small wiggles in the evolution ofz(k,t), modulating the lin-
ear growth, are due to the fact that we decided to plot the
expression ofz(k,t), which contains Bessel functions, an
not only its asymptotic limit formt.1. The same evolution
for z(k,t) derived in this section can be directly inferre
from Eq. ~4.14!, recalling the approximate form ofdpnad.
This calculation is reported in the Appendix.

It is now appropriate to compare the situation of low-sc
quintessential inflation with the situation occurring in th
more conventional case of curvaton models where the in
tionary phase is suddenly followed by the radiatio
dominated phase. In this case thez(k,t) variable grows asAt
~i.e. linearly in conformal time! before the curvaton become
dominant. Here we found that the growth is linear incosmic
time. In spite of this difference, the final amplitude ofz(k,t)
is given approximately byxc(k,td)/ce. In fact, in the case
of a quadratic potential evolving in a radiation-dominat
environment,

ż;S ce

MP
D Fxc~k,te!

MP
GHa~ t !, ~5.22!

where we now havea(t);At. Integrating once the previou
formula we getz(k,t);At. If the evolution occurs during
2-8
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radiation, the curvaton will become dominant at a typic
curvature scaleHd;m(ce/MP)

4 @16#. Using this result, the
amplitude ofz(k,td) is given, as previously anticipated, b
xc(k,td)/ce.

VI. DOMINANCE OF c

Since c starts dominating the background attd , for t
.td the evolution of the system is described by the followi
set of equations:

H2MP
25F ċ2

2
1m2c2G , ~6.1!

ḢMP
252

3

2
ċ2, ~6.2!

c̈13Hċ1m2c50. ~6.3!

For large times Eqs.~6.1!–~6.3! lead to an effectively matter
dominated phase where the oscillations ofc,

c~ t !.c~ td!
cosmt

~Hdt !
2

, ~6.4!

induce oscillations in the Hubble parameter and in the sc
factor, which increases, on average, ast2/3.

It is not difficult to see that, under these conditions, t
evolution of vc is dominated by a constant mode. In E
~4.9! the term containingvw is always suppressed for larg
times since, from Eq.~3.4!

ẇ.
A2

3
MP

td

t2
, ~6.5!

and the quintessence field goes very rapidly to a const
Thus, in this regime, the evolution ofvc is given by

vc~k,t !5vc~k,td!
ċ

H
. ~6.6!

Equation~4.8! allows us to deduce that

vw~k,t !;t23. ~6.7!

Inserting now Eqs.~6.4!–~6.7! into Eq. ~4.12! we find that,
for t.td , z is frozen to its constant value. Therefore, rig
before the decay ofc, the metric fluctuation will be given by

f~k,t r!;
xc~k,te!

ce
. ~6.8!

After t r the field c decays and the evolution of the ge
erated adiabatic mode becomes standard, namely we
the fluctuations of the quintessence field evolving in
radiation-dominated environment together with the cons
mode ofz. The evolution equations for the fluctuations
the quintessence field will then obey, at large scales,
12351
l

le

nt.

ve

nt

ẍw13Ḣẋw1
]2V

]w2
xw54ẇḟ22

]V

]w
f. ~6.9!

The other equations are the standard ones, namely

23H~Hf1ḟ !

5
3

2MP
2
r rd r1

3

2MP
2 F2fẇ21ẇẋw1

]V

]w
xwG ,

~6.10!

f̈14Hḟ1~3H212Ḣ !f

5
1

2MP
2
r rd r2

3

2MP
2 F ẇ2f2ẋw1

]V

]w
xwG ,

~6.11!

Hf1ḟ5
3

2MP
2 F ẇxw1

4

3
r rurG , ~6.12!

ḋ r24ḟ50, ~6.13!

u̇r2
1

4
d r2f50, ~6.14!

whered r5dr r /r r andur is the velocity potential.
As discussed in the context of the quintessential evolut

of the background, the quintessence field, in the pres
model, does not lead to a tracking behavior, as also not
in @9#. Thus, the evolution of the fluctuations during th
radiation-dominated stage of expansion will effectively
the one implied by a standard cosmological term. In fact
can recall, from Eq.~3.5!, thatw approaches a constant valu
as t21/2 while the potential is constant. Then, from Eq.~6.9!
it can be deduced that alsoxw;t21/2 at large scales. As a
consequence, combining Eqs.~6.10! and ~6.11! we have, at
large scales,

f̈15Hḟ12~Ḣ12H2!f50, ~6.15!

leading to the usual constant mode which was present p
to matter-radiation equality, a known feature of these typ
of models@31#.

VII. CONCLUDING REMARKS

In the present paper, low-scale quintessential inflation
models have been analyzed. The setup of the mode
closely related to the one proposed by Peebles and Vilen
Even if the curvature scale at the end of inflation is mu
smaller than 1026MP, curvature perturbations of correct am
plitude can be generated. In these models, the quintess
and the inflaton field are identified. The consistency of
background evolution imposes a number of constraints
the various parameters. Assuming a specific form of
2-9
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inflaton/quintessence potential and a massive curvaton,
evolution of the fluctuations has been followed through
different stages of the model. Even if, for some region of
parameter space of the model, non-Gaussian~adiabatic! fluc-
tuations can be generated, the case of the Gaussian adia
mode has been discussed. The curvaton evolution occu
in low-scale quintessential inflation is different from the o
possibly obtained in the case when the radiation-domina
evolution follows immediately inflation. In low-scale quin
essential inflation, prior to curvaton dominance, curvat
perturbations grow linearly in cosmic time. On the contra
if inflation is immediately followed by a radiation-dominate
stage, then curvature fluctuations grow asAt.

In spite of the fact that low-scale quintessential inflatio
ary models share essential analogies with the predictio
ordinary quintessential inflation there are also relevant dif
ences between them. In ordinary quintessential inflation
models, the reheating is mainly gravitational. In the pres
case the reheating is triggered by the curvaton decay. In
dinary quintessential inflationary models a large backgro
of gravitational waves should be expected in the GHz reg
@32,33#. In the case of low-scale quintessential inflatio
gravitational waves are negligible over all the frequencies
the spectrum and, in particular, at over the typical freque
range of wide-band interferometers@34,35#.
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APPENDIX: EVOLUTION OF z DURING
THE KINETIC PHASE

In this appendix the analytical solution of Eq.~4.14! will
be obtained forte,t,td . During the kinetic phase,ẇ2
et

an
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@ċ2. Furthermore, as discussed in the paper

dpnad.22
]W

]c
xc522m2cxc . ~A1!

Thus, from Eq.~4.14!, we obtain that

dz

dt
5

2H

ẇ2
m2cxc . ~A2!

For te,t,td , the approximate evolution ofc and xc is
given by

c~ t !5ce

At

a3/2

J0~mt!

J0~mte!
,

xc~ t !5xc~k,te!
At

a3/2

J0~mt!

J0~mte!
. ~A3!

Inserting these solutions into Eq.~A2! we get

z~k,t !5
3

2 S ce

MP
D S xc~k,te!

MP
D

3$~mt!2@J0
2~mt!1J1

2~mt!#2~mte!
2%, ~A4!

where we used the fact thatmte!1 because of the constrain
stemming from Eq.~2.20!. Taking the limit of Eq.~A4! for
mt@1 we obtain

z~k,t !5
6

p S ce

MP
D S xc~k,te!

MP
Dmt, ~A5!

which is the same as Eq.~5.19! since atte, according to Eq.
~4.18!, xc(k,te)[vc(k,te).
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