116 research outputs found

    Specialties of coal seams mining under conditions of Western Donbas

    No full text
    Problems that limited usage of plow systems in conditions of Western Donbas are considered. Analysis of plow systems work in Ukraine and abroad is given. Prospects for further research and sharp problems solution in coal industry of Ukraine are established.Розглянуто проблеми, які обмежують застосування стругової техніки в умовах Західного Донбасу. Наведено аналіз роботи стругів в Україні та за кордоном. Встановлено перспективи подальших досліджень та вирішення гострих проблем вугільної галузі України.Рассмотрены проблемы, ограничивающие применение струговой техники в условиях Западного Донбасса. Приведен анализ работы стругов в Украине и за рубежом. Установлены перспективы дальнейших исследований и решений острых проблем угольной отрасли Украины

    No. 11, November 2022: Insights from Co-Designed English Learner Improvement Networks

    Get PDF
    This research brief presents a case study of an English Learner Improvement Network (ELIN), a group of educators focused on a shared problem of practice in English Learner education and supported through extensive collaboration between researchers and practitioners in English Learner education and Improvement Science. The case study involves an urban school district and a charter organization each serving between 50-80% of students who have ever been English Learners. The research brief identifies five key themes that contribute to knowledge of the English Learner Improvement Networks’ ability to support English Learner improvement: (1) Expert Partnerships Support Improvement; (2) Context Impacts Improvement; (3) Smaller Steps Lead to Larger Changes; (4) Collaborative Coaching Counts; and (5) Teacher Leaders Support Implementation. This ELIN is highlighted as a model of a systemic and coherent approach to educational improvement for ELs through the extensive collaboration provided in English Learner content and Improvement Science process.https://digitalcommons.lmu.edu/ceel_education_policybriefs/1012/thumbnail.jp

    Radioimmunotherapy of B-cell lymphoma with radiolabelled anti-CD20 monoclonal antibodies

    Get PDF
    CD20 has proven to be an excellent target for the treatment of B-cell lymphoma, first for the chimeric monoclonal antibody rituximab (Rituxan™), and more recently for the radiolabelled antibodies Y-90 ibritumomab tiuxetan (Zevalin™) and I-131 tositumomab (Bexxar™). Radiation therapy effects are due to beta emissions with path lengths of 1–5 mm; gamma radiation emitted by I-131 is the only radiation safety issue for either product. Dose-limiting toxicity for both radiolabelled antibodies is reversible bone marrow suppression. They produce response rates of 70%–90% in low-grade and follicular lymphoma and 40%–50% in transformed low-grade or intermediate-grade lymphomas. Both products produce higher response rates than related unlabelled antibodies, and both are highly active in patients who are relatively resistant to rituximab-based therapy. Median duration of response to a single course of treatment is about 1 year with complete remission rates that last 2 years or longer in about 25% of patients. Clinical trials suggest that anti- CD20 radioimmunotherapy is superior to total body irradiation in patients undergoing stem cell supported therapy for B-cell lymphoma, and that it is a safe and efficacious modality when used as consolidation therapy following chemotherapy. Among cytotoxic treatment options, current evidence suggests that one course of anti-CD20 radioimmunotherapy is as efficacious as six to eight cycles of combination chemotherapy. A major question that persists is how effective these agents are in the setting of rituximab- refractory lymphoma. These products have been underutilised because of the complexity of treatment coordination and concerns regarding reimbursement

    Two photons into \pi^0\pi^0

    Full text link
    We perform a theoretical study based on dispersion relations of the reaction \gamma\gamma\to \pi^0\pi^0 emphasizing the low energy region. We discuss how the f_0(980) signal emerges in \gamma\gamma\to \pi\pi within the dispersive approach and how this fixes to a large extent the phase of the isoscalar S-wave \gamma\gamma\to \pi\pi amplitude above the K\bar{K} threshold. This allows us to make sharper predictions for the cross section at lower energies and our results could then be used to distinguish between different \pi\pi isoscalar S-wave parameterizations with the advent of new precise data on \gamma\gamma\to\pi^0\pi^0. We compare our dispersive approach with an updated calculation employing Unitary Chiral Perturbation Theory (U\chiPT). We also pay special attention to the role played by the \sigma resonance in \gamma\gamma\to\pi\pi and calculate its coupling and width to gamma\gamma, for which we obtain \Gamma(\sigma\to\gamma\gamma)=(1.68\pm 0.15) KeV.Comment: 31 pages, 9 figure

    SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues.

    Get PDF
    There is pressing urgency to understand the pathogenesis of the severe acute respiratory syndrome coronavirus clade 2 (SARS-CoV-2), which causes the disease COVID-19. SARS-CoV-2 spike (S) protein binds angiotensin-converting enzyme 2 (ACE2), and in concert with host proteases, principally transmembrane serine protease 2 (TMPRSS2), promotes cellular entry. The cell subsets targeted by SARS-CoV-2 in host tissues and the factors that regulate ACE2 expression remain unknown. Here, we leverage human, non-human primate, and mouse single-cell RNA-sequencing (scRNA-seq) datasets across health and disease to uncover putative targets of SARS-CoV-2 among tissue-resident cell subsets. We identify ACE2 and TMPRSS2 co-expressing cells within lung type II pneumocytes, ileal absorptive enterocytes, and nasal goblet secretory cells. Strikingly, we discovered that ACE2 is a human interferon-stimulated gene (ISG) in vitro using airway epithelial cells and extend our findings to in vivo viral infections. Our data suggest that SARS-CoV-2 could exploit species-specific interferon-driven upregulation of ACE2, a tissue-protective mediator during lung injury, to enhance infection
    corecore