107 research outputs found

    The Use of Chokes to Improve the Quality of the Static Frequency Converter

    Get PDF
    The aim of the work is to develop technical measures to improve the quality of the power transmission process through electrical link, which contains a frequency converter based on a PST (phase-shifting transformer) with circular rotation of the output voltage phase in relation to the input, made according to the triangle scheme and controlled by means of power electronics. To achieve this goal, the use of longitudinal inductive elements (chokes) has been proposed as one of the measures that significantly improves the controlled mode parameters in the process of frequency conversion. The problem has been solved by performing computational experiments on simulation models of electrical links, combining two power systems with a frequency of 60 and 50 Hz, respectively. The structure of electrical links at various stages of the study has included several circuit variants of a frequency converter (single-channel circuit, dual-channel with reversing control winding sections, dual-channel circuit without reversing control winding sections) and has developed by authors earlier. In the process of research, the value of inductance of chokes has been changed, as well as their place of connection. The controlled transmission's characteristics have been analyzed as well. The novelty of the work lies in the use of longitudinally included inductive elements as a possible solution to the problem of improving the quality of power transmission when combining power systems with different operating frequencies using static frequency converters. The optimal values of the parameters of inductive elements, comprised between 0.03-0.035Hn for all circuit versions of the converter, have been identified

    Dynamics of Coronal Bright Points as seen by Sun Watcher using Active Pixel System detector and Image Processing (SWAP), Atmospheric Imaging Assembly AIA), and Helioseismic and Magnetic Imager (HMI)

    Full text link
    The \textit{Sun Watcher using Active Pixel system detector and Image Processing}(SWAP) on board the \textit{PRoject for OnBoard Autonomy\todash 2} (PROBA\todash 2) spacecraft provides images of the solar corona in EUV channel centered at 174 \AA. These data, together with \textit{Atmospheric Imaging Assembly} (AIA) and the \textit{Helioseismic and Magnetic Imager} (HMI) on board \textit{Solar Dynamics Observatory} (SDO), are used to study the dynamics of coronal bright points. The evolution of the magnetic polarities and associated changes in morphology are studied using magnetograms and multi-wavelength imaging. The morphology of the bright points seen in low-resolution SWAP images and high-resolution AIA images show different structures, whereas the intensity variations with time show similar trends in both SWAP 174 and AIA 171 channels. We observe that bright points are seen in EUV channels corresponding to a magnetic-flux of the order of 101810^{18} Mx. We find that there exists a good correlation between total emission from the bright point in several UV\todash EUV channels and total unsigned photospheric magnetic flux above certain thresholds. The bright points also show periodic brightenings and we have attempted to find the oscillation periods in bright points and their connection to magnetic flux changes. The observed periods are generally long (10\todash 25 minutes) and there is an indication that the intensity oscillations may be generated by repeated magnetic reconnection

    Preparation of facilities for fundamental research with ultracold neutrons at PNPI

    Full text link
    The WWR-M reactor of PNPI offers a unique opportunity to prepare a source for ultracold neutrons (UCN) in an environment of high neutron flux (about 3*10^12 n/cm^2/s) at still acceptable radiation heat release (about 4*10^-3 W/g). It can be realized within the reactor thermal column situated close to the reactor core. With its large diameter of 1 m, this channel allows to install a 15 cm thick bismuth shielding, a graphite premoderator (300 dm^3 at 20 K), and a superfluid helium converter (35 dm^3). At a temperature of 1.2 K it is possible to remove the heat release power of about 20 W. Using the 4pi flux of cold neutrons within the reactor column can bring more than a factor 100 of cold neutron flux incident on the superfluid helium with respect to the present cold neutron beam conditions at the ILL reactor. The storage lifetime for UCN in superfluid He at 1.2 K is about 30 s, which is sufficient when feeding experiments requiring a similar filling time. The calculated density of UCN with energy between 50 neV and 250 neV in an experimental volume of 40 liters is about 10^4 n/cm^3. Technical solutions for realization of the project are discussed.Comment: 10 pages, more detail

    Quantum Error Correction via Convex Optimization

    Get PDF
    We show that the problem of designing a quantum information error correcting procedure can be cast as a bi-convex optimization problem, iterating between encoding and recovery, each being a semidefinite program. For a given encoding operator the problem is convex in the recovery operator. For a given method of recovery, the problem is convex in the encoding scheme. This allows us to derive new codes that are locally optimal. We present examples of such codes that can handle errors which are too strong for codes derived by analogy to classical error correction techniques.Comment: 16 page

    Efficient Recursion Method for Inverting Overlap Matrix

    Full text link
    A new O(N) algorithm based on a recursion method, in which the computational effort is proportional to the number of atoms N, is presented for calculating the inverse of an overlap matrix which is needed in electronic structure calculations with the the non-orthogonal localized basis set. This efficient inverting method can be incorporated in several O(N) methods for diagonalization of a generalized secular equation. By studying convergence properties of the 1-norm of an error matrix for diamond and fcc Al, this method is compared to three other O(N) methods (the divide method, Taylor expansion method, and Hotelling's method) with regard to computational accuracy and efficiency within the density functional theory. The test calculations show that the new method is about one-hundred times faster than the divide method in computational time to achieve the same convergence for both diamond and fcc Al, while the Taylor expansion method and Hotelling's method suffer from numerical instabilities in most cases.Comment: 17 pages and 4 figure

    Block bond-order potential as a convergent moments-based method

    Get PDF
    The theory of a novel bond-order potential, which is based on the block Lanczos algorithm, is presented within an orthogonal tight-binding representation. The block scheme handles automatically the very different character of sigma and pi bonds by introducing block elements, which produces rapid convergence of the energies and forces within insulators, semiconductors, metals, and molecules. The method gives the first convergent results for vacancies in semiconductors using a moments-based method with a low number of moments. Our use of the Lanczos basis simplifies the calculations of the band energy and forces, which allows the application of the method to the molecular dynamics simulations of large systems. As an illustration of this convergent O(N) method we apply the block bond-order potential to the large scale simulation of the deformation of a carbon nanotube.Comment: revtex, 43 pages, 11 figures, submitted to Phys. Rev.

    The Science of Sungrazers, Sunskirters, and Other Near-Sun Comets

    Get PDF
    This review addresses our current understanding of comets that venture close to the Sun, and are hence exposed to much more extreme conditions than comets that are typically studied from Earth. The extreme solar heating and plasma environments that these objects encounter change many aspects of their behaviour, thus yielding valuable information on both the comets themselves that complements other data we have on primitive solar system bodies, as well as on the near-solar environment which they traverse. We propose clear definitions for these comets: We use the term near-Sun comets to encompass all objects that pass sunward of the perihelion distance of planet Mercury (0.307 AU). Sunskirters are defined as objects that pass within 33 solar radii of the Sun’s centre, equal to half of Mercury’s perihelion distance, and the commonly-used phrase sungrazers to be objects that reach perihelion within 3.45 solar radii, i.e. the fluid Roche limit. Finally, comets with orbits that intersect the solar photosphere are termed sundivers. We summarize past studies of these objects, as well as the instruments and facilities used to study them, including space-based platforms that have led to a recent revolution in the quantity and quality of relevant observations. Relevant comet populations are described, including the Kreutz, Marsden, Kracht, and Meyer groups, near-Sun asteroids, and a brief discussion of their origins. The importance of light curves and the clues they provide on cometary composition are emphasized, together with what information has been gleaned about nucleus parameters, including the sizes and masses of objects and their families, and their tensile strengths. The physical processes occurring at these objects are considered in some detail, including the disruption of nuclei, sublimation, and ionisation, and we consider the mass, momentum, and energy loss of comets in the corona and those that venture to lower altitudes. The different components of comae and tails are described, including dust, neutral and ionised gases, their chemical reactions, and their contributions to the near-Sun environment. Comet-solar wind interactions are discussed, including the use of comets as probes of solar wind and coronal conditions in their vicinities. We address the relevance of work on comets near the Sun to similar objects orbiting other stars, and conclude with a discussion of future directions for the field and the planned ground- and space-based facilities that will allow us to address those science topics

    Microflares and the Statistics of X-ray Flares

    Full text link
    This review surveys the statistics of solar X-ray flares, emphasising the new views that RHESSI has given us of the weaker events (the microflares). The new data reveal that these microflares strongly resemble more energetic events in most respects; they occur solely within active regions and exhibit high-temperature/nonthermal emissions in approximately the same proportion as major events. We discuss the distributions of flare parameters (e.g., peak flux) and how these parameters correlate, for instance via the Neupert effect. We also highlight the systematic biases involved in intercomparing data representing many decades of event magnitude. The intermittency of the flare/microflare occurrence, both in space and in time, argues that these discrete events do not explain general coronal heating, either in active regions or in the quiet Sun.Comment: To be published in Space Science Reviews (2011
    corecore