7 research outputs found

    Effects of catalyst agglomerate shape in polymer electrolyte fuel cells investigated by a multi-scale modelling framework

    No full text
    A multi-scale modelling framework is developed for the PEFC cathode electrode. Unlike the conventional agglomerate model, the effects of the microstructure of the agglomerate are numerically coupled to the fuel cell-scale model in this framework. This is performed through solving the agglomerate-scale model first and subsequently extracting and using the data required to generate the performance curves in the fuel cell-scale model. This enables one to freely investigate the structure of the agglomerate without being limited to the only three agglomerate shapes that can be investigated using the conventional agglomerate model: spheres, long cylinders with sealed ends and long slabs with sealed ends. The numerical studies conducted in this work using the developed framework have revealed that the performance of the cathode electrode is highly sensitive to the specific surface area of the agglomerate if the size of the latter is relatively large, i.e. of the order of 1000 nm. Namely, the maximum reported current density has increased by about 60% when changing from the ‘large’ spherical agglomerate to the ‘large’ cylindrical agglomerate. Also, it has been shown that a slight change in the structure of the agglomerate may significantly improve the fuel cell performance

    The need to breed crop varieties suitable for organic farming, using wheat, tomato and broccoli as examples: A review

    Get PDF
    It is estimated that more than 95% of organic production is based on crop varieties that were bred for the conventional high-input sector. Recent studies have shown that such varieties lack important traits required under organic and low-input production conditions. This is primarily due to selection in conventional breeding programmes being carried out in the background of high inorganic fertilizer and crop protection inputs. Also, some of the traits (e.g., semi-dwarf genes) that were introduced to address problems like lodging in cereals in high-input systems were shown to have negative side-effects (reduced resistance to diseases such as Septoria, lower protein content and poorer nutrient-use efficiency) on the performance of varieties under organic and low-input agronomic conditions. This review paper, using wheat, tomato and broccoli as examples, describes (1) the main traits required under low-input conditions, (2) current breeding programmes for organic, low-input agriculture, (3) currently available breeding and/or selection approaches, and (4) the benefits and potential negative side-effects of different breeding methodologies and their relative acceptability under organic farming principles. © 2010 Royal Netherlands Society for Agricultural Sciences. Published by Elsevier B.V. All rights reserved

    Linseed essential oil - source of lipids as active ingredients for pharmaceuticals and nutraceuticals

    No full text
    Linseed - also known as flaxseed - is known for its beneficial effects on animal health attributed to its composition. Linseed comprises linoleic and ?-linolenic fatty acids, various dietary fibers and lignans, which are beneficial to health because they reduce the risk of cardiovascular diseases, as well as cancer, decreasing the levels of cholesterol and relaxing the smooth muscle cells in arteries increasing the blood flow. Essential fatty acids from flax participate in several metabolic processes of the cell, not only as structuring components of the cell membrane but also as storage lipids. Flax, being considered a functional food, can be consumed in a variety of ways, including seeds, oil or flour, contributing to basic nutrition. Several formulations containing flax are available on the market in the form of e.g. capsules and microencapsulated powders having potential as nutraceuticals. This paper revises the different lipid classes found in flaxseeds and their genomics. It also discusses the beneficial effects of flax and flaxseed oil and their biological advantages as ingredients in pharmaceuticals and in nutraceuticals products.The authors wish to acknowledge the financial support from the Portuguese Science and Technology Foundation, Ministry of Science and Education (FCT/MEC) through national funds, and co-financed by FEDER, under the Partnership Agreement PT2020 for the project M-ERA-NET/0004/2015-PAIRED.info:eu-repo/semantics/publishedVersio
    corecore