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It  is  estimated  that  more  than  95%  of organic  production  is  based  on crop  varieties  that  were  bred  for
the  conventional  high-input  sector.  Recent  studies  have  shown  that  such  varieties  lack  important  traits
required  under  organic  and  low-input  production  conditions.  This  is primarily  due  to selection  in con-
ventional  breeding  programmes  being  carried  out  in  the  background  of  high  inorganic  fertilizer  and  crop
protection  inputs.  Also,  some  of  the  traits  (e.g.,  semi-dwarf  genes)  that  were  introduced  to  address  prob-
lems like  lodging  in  cereals  in  high-input  systems  were  shown  to have  negative  side-effects  (reduced
resistance  to  diseases  such  as  Septoria,  lower  protein  content  and poorer  nutrient-use  efficiency)  on
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the performance  of varieties  under  organic  and  low-input  agronomic  conditions.  This  review  paper,
using  wheat,  tomato  and  broccoli  as examples,  describes  (1)  the  main  traits  required  under  low-input
conditions,  (2)  current  breeding  programmes  for  organic,  low-input  agriculture,  (3)  currently  available
breeding  and/or  selection  approaches,  and  (4)  the  benefits  and  potential  negative  side-effects  of  different
breeding  methodologies  and  their  relative  acceptability  under  organic  farming  principles.
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. Introduction

The characteristics of organic agricultural systems are their bio-
iversity at soil, crop, field, whole rotation or polyculture, and

andscape level and the greater focus on integration of crop and
ivestock production systems on the farm compared with conven-
ional farming systems [1].  The high biodiversity of organic farms
rovides many ecological services that enhance farm resilience to

 large extent [2].  Integrating biodiversity gains due to agronomic
ractices with genetic diversity at crop level provides an insur-
nce with respect to the impact of biotic and abiotic stress factors
n crop yield and quality [3].  The development of genetic diver-
ity focused crop breeding approaches may  therefore be essential
o improve yields and quality parameters in foods from organic

nd low-input farming systems, especially in the context of the
hallenges expected due to global climate change [2].

∗ Corresponding author at: Louis Bolk Institute, Hoofdstraat 24, NL-3972
A  Driebergen, The Netherlands. Tel.: +31 343 523869.

E-mail address: e.lammerts@louisbolk.nl (E.T. Lammerts van Bueren).

573-5214/$ – see front matter ©  2010 Royal Netherlands Society for Agricultural Scienc
oi:10.1016/j.njas.2010.04.001
l Netherlands Society for Agricultural Sciences. Published by Elsevier B.V.
 All rights reserved.

To date, there are only few varieties that were specifically bred
for organic and low-input systems in developed countries. It is
estimated that more than 95% of organic agriculture is based on
crop varieties that were bred for the conventional high-input sector
with selection in conventional breeding programmes. Recent stud-
ies have shown that such varieties lack important traits required
under organic and low-input production conditions [4–6].

A range of breeding goals desired for the organic sector, such as
yield, resistance to biotic and abiotic stress, baking quality (wheat)
and sensory qualities demanded by consumers do not differ from
conventional breeding goals, but it is essential that such traits are
expressed under low-input conditions, which cannot be guaran-
teed if selection is done in high-input agronomic backgrounds.
However, a range of traits are of primary interest for organic farm-
ing, at least on the short term (e.g., increased competitiveness
against weeds and resistance to seed-borne diseases such as com-
mon  bunt in wheat). Also, some traits relevant for conventional
high-input farming may  have negative side-effects on organic sys-

tems. For example, the main focus of most commercial wheat
breeding programmes has been on improving yield by increasing
the harvest index. This involved the introduction of semi-dwarf
genes into cereals and other crops, resulting in short-straw vari-

es. Published by Elsevier B.V. All rights reserved.
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ties. In cereals this approach resulted in (1) reduced size and depth
f root systems, (2) increased reliance on high inorganic-N inputs
o attain satisfactory protein contents, (3) lower nutrient-use effi-
iency, (4) decreased competitiveness against weeds or decreased
obustness against mechanical weed control (and thereby greater
eliance on herbicides), (5) greater susceptibility to diseases such
s powdery mildew, Septoria [7] and Fusarium, and (6) reduced
rotein content [8],  but (7) improved lodging resistance [9–16].

It often takes 10 years or more from the initial inter-varietal
rosses to develop a new crop variety. To realize the varietal
mprovements needed in organic farming in the coming decades,
rosses between appropriate parental varieties have to be made
ow. It is essential therefore to identify the primary limiting fac-
ors of existing varieties for organic production and target them
n the breeding programmes for organic farming and subsequently
ommunicate results to public and commercial breeders.

This review describes the main traits required under low-input
onditions using three different types of crops as examples: (1)
heat, an arable crop, (2) broccoli, a field-grown vegetable crop,

nd (3) tomato, a greenhouse-grown vegetable crop. Furthermore,
ome currently available breeding approaches will be discussed as
ell as the benefits and potential negative side-effects of different

reeding methods and their relative acceptability under organic
arming principles.

. Nutrient-use efficiency

The greatest difference between organic and conventional sys-
ems relates to soil management practices used and to processes in
he rhizosphere [17]. Organic systems often rely on organic matter
ased fertilizer inputs and mineralization-driven N and P supplies
o crops. Macronutrient availability patterns during the growing
eriod therefore differ significantly from those in conventional
ystems. Organic crops often experience limited macronutrient
N and P) availability especially during periods when soil tem-
eratures and water availability reduce mineralization capacity
y the soil biota [18]. However, regular organic matter inputs
ave shown to increase soil biological activity and biodiversity
nd associated mineralization capacity of the soil [19]. Organic
atter based fertilization regimes have also shown to suppress

iseases [20] and induce biochemical pathways in crops involved
n pathogen defence and stress tolerance [21]. In this context it
s likely that organic systems require crop genotypes that are
ble to form active symbiotic relationships with beneficial organ-
sms in the rhizosphere, and thereby establish mechanisms that
ncrease nutrient-use efficiency (e.g., vigorous root systems, ability
o form active mycorrhizal associations, reduced root losses due to
athogens, ability to maintain a high mineralization activity in the
hizosphere via root exudates, increased rooting depth and associ-
ted ability to recover N leached from the topsoil).

Breeding crops under conventional fertilizer regimes with abun-
ant N may  have resulted in varieties that are dependent on
eadily and consistently available N [22]. For example, older wheat
arieties have shown to be superior in N extraction in low-N envi-
onments to modern ones [22]. Crop varieties respond to varying
ystems of fertility management in different ways and mechanisms
or the uptake of different nutrients from soil also differ [23]. In
ddition, varieties have different nutrient requirements and growth
apacities. A genotype with high N-use efficiency is able to realize
igh yields at low soil-N availability. For many crops, significant
enetic variation with respect to N-use efficiency has been demon-

trated [24], making breeding for resistance to N-deficiency stress
easible and practical [14,25].

Improving the different compounds of nutrient-use efficiency,
ike maintenance of photosynthesis under nutrient stress, nutrient-
n Journal of Life Sciences 58 (2011) 193– 205

uptake capacity, nutrient-utilization capacity and translocation
efficiency, will contribute to higher yield and quality under low-
input conditions. For organic farming, the adaptation of varieties
to efficient nutrient-use derived from slow-nutrient-releasing
organic fertilizer is of special importance, which is not addressed
in conventional selection programmes with no or less inorganic
fertilizer [14].

Nutrient-uptake efficiency of plants can be improved by the
capacity of crops to establish and sustain efficient (1) plant-growth-
promoting-rhizosphere (PGPR) bacterial communities [26,27] and
(2) arbuscular mycorrhizas (AMs), a trait that has been described
as “rhizosphere competence”. PGPR-bacteria promote N-uptake
efficiency since they (1) protect root systems against attack by
soil-borne pathogens [28], (2) maintain efficient mineralization-
driven nutrient supplies to plant roots [29,30],  and (3) support the
establishment of active AM associations [14]. AMs  are essential
for efficient phosphorus, micronutrient and water uptake in plants
grown under organic [26] and low-input conditions [27,31]. Under
optimal conditions, especially under high levels of plant available
phosphorus (P), AM symbiosis is less relevant for plant nutrition
and might even have detrimental effects on plant growth due to
carbohydrate costs [32]. Therefore, recent breeding programmes
focused on high-input farming might have selected against such
rhizosphere competence. For example, Hetrick et al. [33] detected
that wheat varieties developed before 1950 were more reliant on
mycorrhizal symbiosis than modern ones. Similarly, landraces of
mycorrhizal wheat grown in low-P soils produced a higher yield
than modern varieties grown under the same conditions [34].

Recently, genes have been identified in tomato [35] and in
wheat [36] that control the ability to form mycorrhizal root symbio-
sis. Moreover, studies have shown that the association of specific
micro-organisms on roots can influence gene expression in the
plant [21], but breeders have yet to exploit these findings. This area
of research is complex and difficult to study because it involves
not only the genotype of the plant, but also its influence on and
interaction with the soil micro-organism population [37].

The Brassicaceae were once thought not to be able to form
mycorrhizal associations, but certain species show low levels of
colonization [38,39]. Little work has been done on rhizosphere
micro-organism interactions with the growth and development of
Brassica oleracea, and this may  be a productive area to pursue in
finding Brassica genotypes with enhanced association. Researchers
at John Innes Institute studied P-use efficiency in B. oleracea [40–42]
and showed that there is genetic variation in this trait and that it is
under quantitative control [42]. Cauliflower varieties with propor-
tionally more fine roots have been shown to be more N-use efficient
[43].

Environmental conditions, especially fertilizer applications,
temperature, light intensity and soil moisture also have a signifi-
cant impact on nutrient-use efficiency (NUE) [44]. Since agronomic
practices and climatic conditions significantly affect NUE  [45], it
is important to quantify genotype × environment interactions of
traits contributing to NUE to ensure and/or to select crop plants
within the context of different agronomic and climatic environ-
ments.

3. Rhizosphere competence for disease suppression

Resistance to soil- and seed-borne diseases and/or mechanisms
to maintain disease suppressive organisms (e.g., plant-growth-
promoting rhizosphere (PGPR) bacteria, AM-fungi) in the rhizo-

sphere are important traits in organic production because healthy
root systems are required for crops to express their genetic poten-
tial for nutrient-use efficiency and yield [27,29,46].  Soil microbial
populations in the rhizosphere have been shown to have the poten-
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ial to reduce the severity of both (1) soil-borne root diseases (e.g.,
hizoctonia, Fusarium culmorum,  Gaeumannomyces graminis var.
ritici) and (2) foliar pathogens (e.g., Septoria tritici causing blotch
nd leaf rust) in wheat [47–49].  Bacteria shown to contribute to
isease suppressiveness have been classified as PGPR bacteria and
oot-colonizing Pseudomonads (e.g., Pseudomonas fluorescens) [49].
uppressive effects are provoked by a range of different mecha-
isms including (1) antibiosis, (2) site and nutrient competition,
nd (3) induction of resistance in the crop plant [49,50].

Recent research indicates that there is significant interaction
etween wheat genotypes and soil microbial composition in the
hizosphere [47,51]. Root exudates are an important plant mech-
nism that affects soil microbial composition [52]. Mazzola et al.
51] demonstrated that the increase in populations of rhizobacte-
ia depended upon the wheat variety that was planted. However,
o what extent genetic factors are responsible for the specific asso-
iations with beneficial rhizosphere micro-organisms is currently
oorly understood. Also, significant efforts are needed to elucidate
he potential of improving crop health and nutrition via beneficial
lant × soil × microbe interactions before breeding programmes
argeting traits associated with such interactions for organic farm-
ng can be developed [27].

. Weed competition

Weed management in row crops grown from transplants,
ncluding many Brassica and some Allium crops, tends to be less
roblematic than in these crops grown from seed. This is due
rimarily to a more rapid development and associated competitive-
ess against weeds as well as the greater suitability of transplanted
ow crops for inter-row mechanical weeding methods. For exam-
le, in the USA, broccoli can be directly sown or transplanted to
he field. The decision to sow directly or to transplant depends on
everal factors, including cost of F1 hybrid seed vs. open-pollinated
eed that could be maintained by the grower, and labour and mate-
ial costs of transplanting compared with direct sowing. In terms of
eed control, broccoli seedlings are small and may  take longer than

ompeting weeds to become established (especially true in warmer
nvironments if more rapidly growing C4 weeds may  be present).
art of the package of a broccoli variety suitable for direct seeding in
rganic production systems would be plant types that emerge and
row rapidly and shade neighbouring weeds. Because B. oleracea
as such a great diversity of cultivated morphological types, suffi-
ient genetic variation should be present in the species to select for
ore weed competitive varieties.
Weed control also remains a problem in many cereal crops such

s wheat. Wheat varieties are genetically variable in their ability
o compete with weeds [53,54]. Lemerle et al. [55] found consid-
rable variation in the relative competitive advantage of 12 wheat
arieties over annual ryegrass (Lolium rigidum). Huel and Hucl [56]
howed that spring wheat varieties differed in competitive ability
gainst oriental mustard (Brassica juncea cv. Cutlass) and culti-
ated oats (Avena sativa cv. Waldern). Balyan et al. [57] reported
hat the grain yield of wheat was reduced by 17–62% depending
n the variety’s ability to compete with wild oats (Avena ludovi-
iana), and Blackshaw [58] found significantly different reductions
n yield among wheat varieties due to differential response in com-
etitive ability against downy brome (Bromus tectorum). Hucl [59]
eported yield gains of 7–9% in ‘competitive’ compared with ‘non-
ompetitive’ wheat varieties. Huel and Hucl [56] found statistically
ignificant (p = 0.001) weed rate × genotype interactions involving

hanges in genotype rank for wheat grain yield when tested under
eed-free and weedy conditions.

In a study evaluating grain yield and weed suppression ability
WSA) of 63 historical and modern spring wheat varieties, a slight
n Journal of Life Sciences 58 (2011) 193– 205 195

decrease in WSA  over the past 150 years corresponded with a large
increase in yield [60]. However, no evidence of a causal relation
between WSA  and grain yield was found, so it is possible that this
correspondence may  simply reflect the relative emphasis (or lack
thereof) these two traits have received during selection. Of these 63
varieties, the top 5 ranked for WSA  reduced weed weight per plot by
573% over the bottom 5. This demonstrates the wide range of WSA
in wheat varieties, and indicates potential for improvement should
this trait become a target for selection. Of the phenotypic traits
measured, only plant height was  responsible for variation in weed
weight, whereas coleoptile length, juvenile growth habit, 1000 ker-
nel weight and leaf area index had no direct effect on WSA  in this
study [60]. Interestingly, all these traits have been reported previ-
ously as weed suppression traits, indicating that traits important
for WSA  are fluid and often depend on site-specific environmental
conditions, and also on the winter or spring growth habit in wheat.

Allelopathy is another potentially important weed suppression
trait that has received little attention in recent years. Allelopa-
thy is a chemical process where plants provide themselves with a
competitive advantage due to the direct or indirect effect on germi-
nation, growth or development of neighbouring plants [61,62]. An
initial step towards the development of varieties with allelopathic
activity is to evaluate the allelopathic potential of crop germplasm
in bioassay-based studies. Using such approaches, different wheat
accessions have been shown to strongly inhibit the growth of the
weed species Bromus japonicus and Chenopodium album [63], and a
number of allelopathic compounds have been identified in wheat
[64,65]. Wheat varieties have also been screened for their allelo-
pathic potential against annual ryegrass (L. rigidum). Wu  et al. [66]
found that the inhibition of root growth of ryegrass ranged from
24 to 91% among 453 wheat varieties. Wu  et al. [62] suggested that
the identification of varieties with high allelopathic activity and
the transfer of such a characteristic into modern varieties could
restore an important trait that has inadvertently been lost during
the process of selection for higher yields.

In the Brassicaceae, glucosinolate breakdown products have
weed- and pathogen-suppressive effects. Myrosinase catalyzes the
conversion of glucosinolates to isothiocyanates and related com-
pounds but is not released until plant tissue maceration [67].
The effect has been most clearly demonstrated in crops following
ploughing under a cruciferous green manure crop. In the studies
that have examined if growing Brassica crops have a direct allelo-
pathic effect on weeds, no significant effect was found [68,69]. It
is unlikely that weed suppression through allelopathy could be
directly used in broccoli, but varieties bred with increased glucosi-
nolate levels in vegetative tissues could be part of a long-term weed
control strategy in crop rotations.

5. Tolerance to mechanical weed control

For field crops such as wheat, selection of genotypes with tol-
erance to mechanical weed control (especially tine weeders) also
has the potential of becoming an efficient component of breeding
strategies for weed competitiveness. Especially in reduced-tillage
systems, which are known to result in higher weed pressure,
mechanical weed control is applied more frequently. Tillage sys-
tems have a direct effect on soil-carbon balances, soil organic
matter, rooting depths, and loss of topsoil by wind and water ero-
sion. Types of tillage systems include no tillage, minimum tillage
and deep ploughing. Many no tillage systems are dependent upon
herbicides, so that while soil erosion and carbon losses are reduced,

herbicide usage is often essential. However, in reduced or mini-
mum tillage systems, herbicide-free protocols are feasible [70,71]
and could be further implemented into organic farming if varieties
with increased competitiveness and/or resistance to mechanical
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eed control were available. In many low-rainfall regions of the
orld (less than 400 mm  per year), stand establishment is the
ost important factor affecting winter wheat grain yield [72]. Early

round cover is one aspect vital to weed suppression [73] and
his trait can be introduced into wheat varieties and was shown
o provide a competitive advantage over early emerging weeds
nd increased resistance to mechanical weeding operations [74].
n wheat, emergence is strongly influenced by coleoptile length, a

oderately heritable trait that can be effectively incorporated into
odern varieties through breeding [72,75,76].
Several studies have demonstrated that the best varieties for

educed tillage and no tillage systems are also the best varieties for
onventional tillage systems [77–79]. Results from these studies
uggest that tillage system does not need to play a role in varietal
election. Hall and Cholick [80], however, found significant vari-
ty × tillage interactions for grain yield over two tillage systems,
nd suggested that selection under no tillage conditions should
e considered to develop spring wheat varieties for no tillage sys-
ems. Additionally, in a study on the effect of mechanical harrowing
n spring wheat, a genotype × treatment interaction was found
ith weed weight per plot as a response variable [60]. Six vari-

ties showed improved WSA, three had reduced WSA  and ten had
educed yield under the mechanical tillage treatment [60].

Physical damage to wheat plants from mechanical weed con-
rol may  cause significant yield reduction [81]. Mechanical weed
ontrol is usually done with tine weeders early in the season, sup-
lemented in some regions by inter-row cultivation. The ability
o tolerate damage and/or a rapid recover following mechanical
eed treatments is therefore an important trait for varieties used

n organic and low-input systems [60,82].

. Resistance to major seed-borne diseases

Resistance to seed-borne diseases in organic seed production is
n important issue as few seed treatments are permitted for use
nder organic farming standards. Dwarf bunt (Tilletia controversa)
nd common bunt (Tilletia tritici syn. T. caries) are major diseases
f winter wheat that occur in many areas of the world where win-
ers are relatively mild but regularly have a persistent snow cover.

 long period of stable cool temperatures and high humidity pro-
ided by the snow cover induces soil-borne teliospores of the fungi
o germinate and eventually produce hyphae that infect seedlings
uring winter. As a rule, infected plants are dwarfed and have an

ncreased number of tillers. The disease replaces the kernel with a
etid sorus filled with teliospores.

Common bunt, the most important disease of wheat in the
eriod early to mid  1900s [83], is now effectively controlled by
ungicide seed treatments in conventional farming. However, these
reatments are prohibited under organic certification standards.
otential organic seed treatments (e.g., Tillecur) show varying
egrees of effectiveness but are additional inputs and increase pro-
uction costs [84,85]. In organic production it would therefore be a
rop health and economical advantage to use varieties with resis-
ance or tolerance to common bunt and dwarf bunt [86]. Common
unt has the potential of becoming an economically devastat-

ng disease for organic farmers (especially those using farm-saved
eed) unless an effective organic seed treatment is developed or
enetic resistance is incorporated into wheat varieties used in
rganic systems [87].

Valuable breeding achievements have been made in developing
heat varieties with enhanced resistance to common bunt by intro-
ression of major race-specific resistance genes (Bt1–Bt13) [88,89].
owever, little research has been done to identify non-race-specific

esistance or tolerance to common bunt. In a recent study, Fofana et
l. [90] detected three quantitative trait loci associated with com-
n Journal of Life Sciences 58 (2011) 193– 205

mon  bunt resistance that might be a good source of durable bunt
resistance or tolerance.

Seed-borne diseases of tomato include tomato mosaic virus
(ToMV), bacterial speck and bacterial spot (caused by Pseudomonas
syringae pv. tomato and Xanthomonas campesiris pv. vesicatoria,
respectively) and fungal pathogens such as Clavibacter michiga-
nensis.  Whereas ToMV has about the same magnitude of threat to
conventional and organic tomato production, bacterial and fungal
diseases are a more serious problem in organic systems because the
use of fungicides and antibiotics (other than sulphur- and copper-
based products) is prohibited. The two  basic strategies to control
seed-borne diseases in tomato are: (1) the use of seed treatments
(e.g., antagonistic micro-organisms, compost extracts, fermenta-
tion, acids and acidified nitrite), and hot water treatment, and/or
(2) the use of resistant varieties. Resistance to bacterial speck and
bacterial spot is available in commercially used tomato germplasm
and should be more widely incorporated into tomato varieties bred
for organic systems. ToMV can be a major problem in greenhouse-
grown tomatoes because the virus is stable and easily spreads
through handling. Seed treatment to inactivate the virus does not
work well, particularly if the virus is present in the endosperm of
the seed. Resistance is the preferred method of control and has been
incorporated into a wide range of commercial materials. The most
widely used form of resistance (Tm-22) was derived using embryo
rescue from Solanum peruvianum [91]. Another resistance gene
(Tm-1) that provides resistance against the predominant strain of
ToMV was transferred from S. habrochaites without the use of spe-
cial crossing techniques such as embryo culture [92]. As such, Tm-1
would be the preferred source of resistance to incorporate into
varieties developed for organic production systems.

The major seed-borne disease of broccoli is black rot (caused
by Xanthomonas campestris pv campestris). As in tomato, it can be
controlled with antibiotics and copper treatments in conventional
production systems. The best option for organic production would
be the use of resistance. Incomplete resistance is found in B. oler-
acea, but more complete forms of resistance have been identified in
B. napus and B. carinata [93]. Early attempts to introduce resistance
from B. carinata into B. oleracea were made using somatic hybridiza-
tion, and recently in vitro embryo culture was  used to introgress
resistance [93].

7. Resistance to other fungal and bacterial diseases

Tolerance to diseases that may  cause injuries and are likely to
affect plant health and quality is crucial for minimizing the gap
between yield potential and actual yield. This applies to conven-
tional high-input as well as to low-input or organic farming.

In Europe, resistance breeding in wheat is focused on the most
serious foliar diseases in conventional wheat production systems
including Septoria, rusts and to a lesser extent powdery mildew and
stem-based pathogens associated with lodging. Duveiller et al. [94]
highlighted the effect of changing environmental conditions on the
development of foliar disease epidemics in wheat. Climate change
is likely to modify the wheat disease spectrum in some regions,
and pathogens or pests considered unimportant today may  turn
out to be potential new threats in future. For example, necrotrophic
pathogens (e.g., spot blotch or Septoria) and Fusarium head blight
may  increase in importance in many areas of northern Europe.
While the severity of lodging and powdery mildew was shown to
decrease in organic farming systems, the importance of Septoria
was reported to increase in UK (e.g., [95]). Resistance to Fusar-

ium head blight is of special importance to minimize the risk of
Fusarium toxins in the grain, whereas breeding for root disease
resistance has been of minor importance. Fusarium resistance is
particularly important in areas where climatic conditions and/or
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gronomic practices (e.g., where minimum tillage is used and/or
aize is grown in rotation with wheat) are favourable for Fusarium

evelopment.
Resistance breeding combined with appropriate management

pproaches (e.g., diverse rotations, timely sowing, and improved
rrigation methods) can minimize losses caused by such pathogens.
or example, in South Asia it was shown that the effect of spot
lotch, a devastating foliar disease of wheat caused by Cochliobolus
ativus, can be minimized by reducing physiological stress through
imely sowing and adequate use of fertilizers [94]. Dordas [96]
eviewed the effect of the nutrients N, P, K, Mn,  Zn, B, Cl and Si
n disease resistance in sustainable agriculture. At high N levels
he severity of infection with obligate parasites increases, while
nfection with facultative parasites decreases. Silicon has been
hown to control a number of diseases [97,98]. Dordas [96] con-
luded that an adjusted nutrient supply can assist to limit disease
everity.

Although a number of diseases may  affect broccoli regionally,
ead rot, caused by a complex of soft rot bacteria (Erwinia and Pseu-
omonas spp.), can cause problems whenever water accumulates
n the developing broccoli head. Genetic variation in head rot resis-
ance exists in broccoli and is associated with smooth, domed heads
nd small, tight beads [99]. Blackleg (Leptosphaeria maculans, for-
erly Phoma lingam), and Alternaria (caused by various Alternaria

pp., but mainly A. brassicola)  are two diseases that cause significant
conomic losses in Europe and eastern USA where pesticide-based
ontrol options used by conventional growers are not available to
rganic growers [4].  Hot water treatment can be used to disin-
ect seed, but the technique is not completely reliable and may
educe germination [100]. Differences in genetic resistance have
een observed among various Brassica species, and this resistance
eeds to be transferred into a B. oleracea background.

Tomato diseases such as Fusarium oxysporum f.s.  lycopersici and
erticillium dahliae may  be of less concern in organic systems
ompared with their impact on conventional ones due to the sup-
ressive effects of organic matter based fertilization regimes [101].
ther ones, such as various viruses (ToMV, and tomato spotted wilt
irus – TSWV) are more universal, or occur regionally (TSWV) inde-
endent of production system. Whereas late blight (Phytophthora

nfestans) can occur in conventional and in organic systems, it is of
ess concern in conventional systems because of the greater choice
nd efficacy of fungicides available compared with organic sys-
ems, where only protective copper-fungicides can be used. This
as led to emphasis on breeding for late blight resistance in tomato

ntended for organic systems [102,103].  Late blight is usually most
evere in early spring and late summer or fall when environmental
onditions favour disease development. Early-spring infections are
enerally reported from high-tunnel production systems, whereas
all infections are typically found in the field. Several sources of
esistance for late blight are known [104]. Some forms of resistance
re qualitative and confer resistance to specific races whereas other
nes show quantitative effects. Oregon State University started to
ombine the Ph-2 resistance gene with quantitatively inherited
enes derived from S. habrochaites as well as with Ph-3 resistance
enes [103].

. Insect resistance

Because insecticides are not permitted under organic farming
tandards, organic growers apply alternative measures. Examples
f cultural management tools are e.g., the establishment of beetle

anks to maintain high predator or parasite populations; com-
anion plants to repel or distract pests; mass trapping systems,
heromone-based mating disruption. But also alternative treat-
ents can be applied (e.g., Bt) and barrier-based approaches to
n Journal of Life Sciences 58 (2011) 193– 205 197

control invertebrate pests (most importantly the use of insect-proof
netting).

For example, many Brassica vegetable growers rely on row cov-
ers in early season to prevent cabbage fly infestation (Erioischia
brassicae), flea beetle (Phyllotreta spp.), and lepidopteran pests
(Plutella xylostella, Pieris rapae), and biological control products (Bt
and Spinosad) are widely used to control lepidopteran pests (e.g.,
diamond back moth) and aphids. Aphids (Brevicoryne brassicae,
Lipaphis erysimi, Myzus persicae) are often a problem in autumn and
on overwintering plants. Epicuticular wax may be positively or neg-
atively associated with insect pest populations. Specifically, glossy
(waxless) variants of white head cabbage (B. oleracea) showed less
damage from lepidopteran pests, reduced whitefly (Aleyrodes bras-
sicae, Bemisia tabaci)  populations and resulted in fewer eggs laid by
cabbage maggots [105]. Flea beetle damage was higher on glossy
plants, and both an increase and a decrease in aphid populations
have been reported. One hypothesis is that insect predator species
are able to traverse all leaf surfaces and encounter insect prey
[106,107],  but other factors such as wax  composition and colour
may  influence insect herbivory and ovipositor behaviour [108]. The
glossy phenotype has been associated with reduced tissue damage
from thrips [105], but recent research showed a positive correla-
tion between wax layer thickness and cabbage root fly infestation
in white head cabbage [109]. Thrips is a major and increasing prob-
lem in the Netherlands and is currently studied in a pre-breeding
programme of Plant Research International in Wageningen, The
Netherlands. Whereas waxless variants have been extensively
studied in relation to insect behaviour, over-expressing waxy vari-
ants have received little research attention. It may be that both ends
of the wax production spectrum have arthropod deterrent proper-
ties. The waxless trait would have its best application in glasshouse
production environments where only thrips and no other pests are
the predominant problem.

9. Tolerance to abiotic stress

Breeding for tolerance to the abiotic stresses is another impor-
tant issue. Apart from nutrient stress resistance (see above),
drought, salinity, aluminium toxicity and heat stress are other
important abiotic stress factors that cause yield reductions [110].
With climate change, the importance of drought and the area of irri-
gated land with saline soils are expected to increase significantly.
Breeding for drought and salinity tolerance has proved to be dif-
ficult [111] as the mechanisms of tolerance are very complex and
poorly understood [110,112,113].  Nevertheless, drought tolerance,
water-use efficiency and heat stress tolerance are already consid-
ered major breeding goals for wheat production in marginal regions
[113]. There are good chances for improving salt and aluminium tol-
erance in wheat breeding material via introgression of resistance
genes identified in wild relatives [114].

Tolerance to abiotic stresses is important not only for organic
but also for conventional agriculture. In some cases such as drought
stress, organic farmers may  give higher priority to such traits as
they want to build up a system that is less dependent on inputs.

10. Quality

10.1. Bread-making quality

Only a limited number of studies have focused on quality
aspects of organic wheat production [115–118].  This trait is of par-

ticular concern to organic farmers and consumers since protein
content (an important factor affecting bread-making quality) in
organic cereals tends to be lower due to the difficulty and costs
of foliar application of inorganic-N fertilizers applied later in the
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rowing season. A higher protein content and/or quality without
he need for late season N inputs are therefore major breeding
bjectives. However, new varieties should be particularly suitable
or wholemeal-bread making and artisan baking processes, com-
ining sensory and nutritional qualities (e.g., increased levels of
icronutrients) as the consumers of organic bread expect highest

rganoleptic quality.
The definition of wheat quality differs depending on market

lass and on the desired baking product. Quality parameters cor-
elated to bread-making quality include protein content, protein
uality, single kernel hardness, SDS sedimentation, ash content,
agberg falling number, flour colour, dough and gluten strength,

ingle kernel size and full baking and milling tests [119]. These
ests were designed for the assessment of grain from conven-
ional production and focus on assessing its suitability for white
read produced in large-scale industrial baking processes (e.g., the
ampden and Chorleywood process widely used in the UK). More
mphasis is needed on the development of tests to assess bread-
aking quality for wholemeal bread and artisan bread-making

rocesses (including sour dough based bread production) often
sed by smaller bakeries [118,120].

Grain protein content is one of the most important factors deter-
ining overall bread-making quality. Some studies have found no

ifference in grain protein content between varieties from organic
nd varieties from conventional systems [121–123]. However,
ther studies have shown higher levels of protein in conventional
ompared with organic systems [124,125].  Grain protein content
s highly dependent on climatic conditions and available soil-N,
specially late in the growing season during grain filling. SDS, a
easure of gluten strength, has been shown to be lower in organic

han in conventional crops [123] and to increase with increasing
 supply [126–128]. Recent studies indicate that organic fertiliza-

ion regimes, while reducing protein content, will improve other
read-making quality related parameters, such as protein composi-
ion, the gliadin to glutenin ratio, acetic acid soluble proteins, starch
uality and length of amylopectin chains, diameter of starch gran-
les, pentosan content, �-amylase activity, and water absorption
129,130]. However, according to reports from bakers in several EU
ountries, this often does not compensate fully for the reduction in
rotein content. So more research is needed on the exact contri-
ution of these parameters to the overall bread-making qualities
efore designing selection protocols based on the most important
arameters for future organic wheat breeding programmes.

0.2. Nutritional value

The demand for organic products is partially driven by the belief
hat organically grown products are healthier and more nutritious
han conventionally grown products [131]. It is therefore important
or a plant breeder developing varieties for the organic sector to also
elect for nutritional quality parameters. Significant variation in
ineral and vitamin contents exists among varieties within crops,

nd nutritional quality is often dependent on specific management
ractices [132].

For example, for wheat, differences in mineral content and/or
ineral bioavailability among genotypes have been reported for

ron, zinc and other micronutrients [133–135]. Grain micronutrient
ontent can also be influenced by environmental and soil condi-
ions, including soil organic matter, pH, and the bioavailability of
oil minerals [136–138]. Soils with a low pH have been shown to
educe uptake of the macronutrients Ca and Mg and to increase
ptake of the micronutrients zinc, manganese and iron [138]. Geno-

ype × environment interactions should therefore be considered
hen developing breeding programmes that focus on nutritional

uality parameters, since selection under specific soil conditions
ay  allow further optimization of nutritional quality.
n Journal of Life Sciences 58 (2011) 193– 205

Similarly, for broccoli, heterogeneity exists for important nutri-
tional components (e.g., vitamin C, carotenoids, flavonoids, and
glucosinolates) [139] and some breeding programmes already
select for improved contents of these nutritionally desirable com-
pounds.

The traits associated with tomato fruit quality depend very
much on the market type. In general, higher levels of carotenoids
(lycopene, beta-carotene), vitamin C, and flavonoids are considered
beneficial. Tomatoes are a major source of carotenoids and vitamin
C in the diet, but rank fairly low compared with other vegetables
for flavonoids. The Oregon State University (OSU) programme has
developed tomatoes with anthocyanin levels around 80 mg/100 g
fresh weight by combining two genes (Aft and atv) originally intro-
gressed from wild species [140]. If combined with a third gene (aw),
anthocyanin but not flavanol accumulation is suppressed, produc-
ing tomato fruits with a normal colour but with a greater biological
activity associated with flavonoids [141].

Although flavour is one of the most difficult traits to breed
for, tomato breeding programmes often include selection steps
designed to improve flavour. Growers will state that tomatoes
need to have good flavour, but cannot agree on what good flavour
implies. It is easier to define bad flavour – soft mealy texture, bland
taste with low sugar content or a bad balance of sugar to acid ratio
[142,143].

11. Current breeding programmes for organic and
low-input wheat production

Wolfe et al. [6] differentiated three different potential
approaches to obtain crop varieties suitable for organic agriculture:
(1) breeding programmes focused on the needs of conventional
agriculture where selection is carried out under conventional farm-
ing conditions, an approach requiring farmers to test varieties and
select the ones that perform well under organic conditions, (2)
varieties derived from conventional breeding programmes where
crosses and early selection are focused on traits required in conven-
tional systems, but where later or advanced breeding generations
are evaluated and selected under organically managed farming
conditions, and (3) varieties derived from breeding programmes
where crosses and selection strategies focus on traits demanded by
the organic sector and selection is carried out in the background of
organic farming conditions. The level of breeder-driven and farmer-
driven activities may  differ in these three breeding approaches.
In addition, there are also farmers who  use their own  selection
programmes, often based on older (regional) varieties or landraces.

11.1. Breeding programmes for organic agriculture (selection
under organic farming conditions in advanced generations)

Several commercial wheat breeding companies in Europe have
dedicated part of their breeding efforts to breeding programmes for
low-input and organic agriculture. For example, Saatzucht Donau
GmbH & CoKG in Austria currently uses two  different early gener-
ation selection methods for wheat: (1) pedigree selection under
low-input conditions; and (2) bulk populations with individual
ear selection under organic conditions followed by selection under
low-input conditions in advanced generations. First, yield trials are
conducted parallel under low-input and organic conditions allow-
ing a classification of the breeding material for further selection
for organic or conventional agriculture. So far, seven winter wheat
varieties have been released in Austria after exclusive organic VCU

testing [16].

The private breeding company Saatzucht Schweiger GbR in Ger-
many compared the performance of their varieties under organic
and conventional conditions and identified the limited-N avail-
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bility in organic systems as a specific problem to combine high
ield and good baking quality. In these trials one of their varieties
howed similar bread-making parameters under organic and con-
entional farming, but the most relevant parameter, i.e., baking
olume, was below the limit under conventional and well above
he limit under organic conditions. It was concluded that this vari-
ty can produce superior bread qualities under organic conditions
nly. For future organic breeding programmes, improving baking
uality and gluten content are seen as key objectives [144].

In France, some publicly funded wheat breeding programmes
tarted to select under organic and low-input conditions. For
xample, INRA started an organic farming focused winter wheat
reeding programme in 2003 [145,146].  In a variety trial compar-

ng the performance of winter wheat varieties under (1) low-input
nd (2) organic agricultural regimes in the three main macro-
limatic regions (four-year trials) in France that are important for
heat production, INRA showed that some varieties selected under

NRA’s low-input regime – in contrast to the varieties derived
rom high-input selection – had similar ground cover, speed of
rop establishment (traits correlated to weed suppressiveness)
nd bread-making quality characteristics (protein content, gluten
ndex, baking tests), but often higher grain yields than varieties
elected under and developed specifically for organic produc-
ion conditions in Switzerland, Germany and Austria [146]. To
mprove selection of varieties best adapted to organic farming
good response to low levels of nutrients, good competitive abil-
ty against weeds, etc.), they proposed a global selection index that
akes into account yield, quality (alveograph W and protein con-
ent) and weed competition (crop canopy height and wheat ground
over) to optimize results [146].

1.2. Breeding programmes within organic agriculture (selection
nder organic farming conditions in all generations)

Only a few private or publicly funded breeders conduct wheat
reeding exclusively under organic conditions. Getreidezüchtung
eter Kunz (GZPK) in Switzerland has been breeding wheat and
pelt for 25 years. This company focuses on combining (1) resis-
ance to diseases that remain a problem in organic and low-input
ystems (i.e., Septoria, Fusarium, rusts, bunt), (2) resistance to abi-
tic stress factors (drought and low nutrient levels) and (3) quality
raits related to high bread-making quality [147]. In order to reach
hese breeding goals, hundreds of crosses were made between tra-
itional and older long-straw varieties from German and Swiss
reeding programmes and modern high performance wheat vari-
ties in order to combine the good characteristics of older and
odern varieties. Progenies are selected under organic and low-

nput conditions in all stages of the breeding process. So far 10
inter wheat varieties have been successfully released.

In Germany, Getreidezüchtungsforschung Darzau, Keyserlingk-
nstitute and the Getreidezüchtungsforschung Dottenfelder Hof
ave breeding programmes where crosses are designed to combine
raits required by the organic sector and selection is done under
rganic farming conditions only.

Whereas there are a range of ongoing breeding programmes for
rganic winter wheat, there is currently limited focus on the devel-
pment of organic spring wheat breeding programmes, in spite of
he fact that in Europe the proportion of spring wheat grown is
arger in organic production systems than in conventional farming.
his is mainly because breeding companies do not have budgets and
acilities (land managed to organic farming standards) to develop
eparate spring wheat selection programmes under conventional

igh-input and organically managed conditions, since the overall
arket potential for ‘organic’ spring wheat varieties is still too low

10,148]. Due to the absence of specific organic spring wheat selec-
ion programmes, no new spring wheat varieties have come onto
n Journal of Life Sciences 58 (2011) 193– 205 199

the market that are suitable for organic farming in many European
countries. For example, in the Netherlands organic bread wheat
production relies almost entirely on a single spring wheat variety
(Lavett) that was  developed more than 15 years ago [149].

Washington State University has an extensive ongoing wheat
breeding programme (funded by industry, state and federal govern-
ment sources) focused on the development of varieties for organic
and low-input systems [5,150]. A range of existing genotypes,
including traditional landraces, modern varieties and wild wheat
species are currently being crossed and the progenies selected for
optimal grain yield and baking quality, enhanced nutritional value,
and improved nutrient-use efficiency and weed competitiveness
under organic farming conditions [5,150]. The decision to breed
wheat under certified organic conditions in all generations came
about from a study in which Murphy et al. [5] demonstrated that
the highest yielding soft white winter wheat genotypes in conven-
tional systems are not the highest yielding genotypes in organic
systems. As a consequence, breeding for higher yields in organic
systems will require direct selection within organic systems rather
than indirect selection in conventional systems. In four of the five
organic systems direct selection produced yields that were from 5
to 31% higher than the yields resulting from indirect selection [5].

For tomato, Oregon State University breeding programme
focuses on varieties suitable for the maritime environments of
the Pacific Northwest USA where the challenges are primarily the
low growing temperatures. Varieties developed in this programme
are early maturing, determinate, and parthenocarpic, i.e., traits
that increase productivity under suboptimal growing conditions. In
2005, with funding through the Organic Seed Partnership, tomato
breeding for organic systems began with the emphasis on develop-
ing open-pollinated varieties with improved late blight resistance.
Selection has been based primarily on late blight resistance along
with fruit characteristics and was performed under organic grow-
ing conditions. Selection for adaptation to organic production has
been achieved by selection for productivity without knowing what
specific traits provide that adaptation and productivity. In Europe,
several small organic tomato breeding programmes are being ran
that focus e.g., on late blight [102] and taste [143].

For Brassicas, broccoli is the main example of participatory
breeding programmes focused on the organic sector. Such pro-
grammes exist in Brittany (France) [151] and at Oregon State
University; these will be discussed below.

12. Breeding approaches

Many of the selection approaches that are used in conven-
tional breeding programmes can also be utilized in organic farming
focused breeding programmes. For example, for wheat this includes
the development of inbred lines using a variety of methods, includ-
ing pedigree selection, single seed descent, modified pedigree-bulk
selection, phenotypic and molecular marker-assisted selection, and
participatory breeding.

12.1. Sources of genetic diversity

The creation and exploitation of genetic diversity is the main
requirement for successful plant breeding. Breeders differentiate
between the primary gene pool (elite breeding lines), the sec-
ondary gene pool (landraces, lines not adapted to local conditions
or gene bank material) and the tertiary gene pool (related species
or wild relatives). Wheat breeders have significantly improved

wheat performance by exploiting the genetic variability within
the primary wheat gene pool. In order to maintain future genetic
progress, Trethowan and Mujeeb-Kazi [152] suggested to explore
additional sources of genetic variation such as synthetic wheat vari-
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ties and landraces, and introgression of genes from related species.
or example, synthetic hexaploid wheat, derived by crossings of
etraploid wheat with Aegilops tauschii, was shown to provide new
enetic variability for resistance to drought, high temperature,
alinity, waterlogging, and soil micronutrient imbalances from the
econdary wheat gene pool. Synthetically derived materials have
erformed well in many high stress environments globally. Accord-

ng to Trethowan and Mujeeb-Kazi [152] there is also significant
nexploited variation among landraces and modern wheat vari-
ties. The tertiary gene pool, with a few significant exceptions, has
een more difficult to exploit due to complex inheritance, meiotic

nstability, and an associated linkage drag of undesired traits. Nev-
rtheless, related species have proved to be a very valuable source
or the introgression of resistance genes in the wheat breeding

aterial [153,154].

2.2. Exploiting genetic variation within varieties

Genetic variation within released wheat varieties is relatively
mall, because (1) wheat is a self-pollinating species and (2)
omogeneity is an essential requirement for variety release. An
lternative method employed by Phillips and Wolfe [155], main-
aining genetic diversity and evolutionary fitness within varieties,
s to create composite cross populations. Composite cross pop-
lations are formed by assembling seed stocks with diverse
volutionary origins and characteristics, recombination of these
tocks by cross pollination, the bulking of F1 progenies, and sub-
equent propagation of the bulked progenies in successive natural
ropping environments. Natural selection takes place if more
dapted genotypes produce more progenies than less adapted ones.
omposite cross populations can provide dynamic gene pools,
hich in turn provide a means of conserving genetic resources in

itu. They can also allow selection of heterogeneous crop varieties.
ccording to Phillips and Wolfe [155], composite cross popula-

ions may  have the potential to allow evolutionary changes based
n biotic and abiotic environmental interactions and might be an
lternative for selecting superior pure lines especially for low-
nput systems characterized by unpredictable stress conditions.
he effect of natural selection on composite cross populations of
heat was demonstrated by David et al. [156] by analysing the shift

n protein patterns after several generations of cultivation in dif-
erent macro-environments in France. However, further research
s needed to verify the superiority of this strategy with respect to
olerance to abiotic and biotic stress under commercial cultivation,
onsidering also the demand of the market for uniform high bread-
aking quality of wheat and the demand of the farmers for higher

ield in organic farming. The development of genetically diverse
arieties is strongly prevented by present laws like the Union for
he Protection of New Varieties (UPOV) guidelines, EU rules (Reg-
lation 2100/94/EC) or the Plant Varietal Protection Act (PVPA) in
he USA, which require that a variety must be phenotypically uni-
orm, stable and distinguishable from other varieties in order to be
fficially released. Political efforts are undertaken to change this
trict legislation.

Multiline varieties and variety mixtures can also provide func-
ional diversity that limits pathogen and pest expansion in cereals
nd other crops [157]. These approaches also reduce the risk of
esistance breakdown, which was due to a range of mechanisms
ncluding barrier and frequency effects as well as induced resis-
ance. Also, differential adaptation, i.e., adaptation within races to
pecific host genotypic backgrounds, may  prevent the rapid evo-
ution of complex pathotypes in mixtures [157]. Therefore, yield

tability (i.e., consistently high yields over a range of environments)
n wheat is commonly greater in mixtures than in pure stands
3]. The wide application of variety mixtures in organic farming
s constrained by the concern of farmers and processors about the
n Journal of Life Sciences 58 (2011) 193– 205

anticipated negative effect on the homogeneity of the wheat qual-
ity. However, if the mixture components are carefully designed
and have already been selected for desired traits in the breed-
ing progress, product quality may  be equal to or higher than that
obtained in pure stands [3].  Nevertheless, there is still a risk that
due to genotype × environment interaction unacceptable hetero-
geneity may  occur under different environments.

12.3. Participatory plant breeding

Participatory plant breeding (PPB) programmes originated in
developing countries to meet the needs of low-input, small-scale
farmers in marginal environments that are not targeted by com-
mercial breeding companies [158]. PPB involves breeders, farmers,
as well as consumers, extension specialists, vendors, industry, and
rural co-operatives in plant breeding research. It is termed ‘par-
ticipatory’ because all stakeholders can influence all major stages
of the breeding and selection process. These stakeholders become
co-researchers as they can help to set overall goals, determine spe-
cific breeding priorities, make crosses, screen germplasm entries in
the pre-adaptive phases of research, take charge of adaptive testing
and lead the subsequent seed multiplication and diffusion process
[159]. The fundamental rationale for PPB programmes is that joint
efforts can deliver more than when each actor works alone and
focuses only on specific objectives.

Due to the special need of farmers for varieties suitable for
organic farming and due to the small organic market not always
being attractive for commercial plant breeders, this approach
gained greater attention in breeding programmes for organic
farming systems [149,160].  In conventional systems, inorganic fer-
tilizers and synthetic crop protection chemicals often encourage
homogeneity across a diversity of agro-environments. Organic and
traditional low-input farms are often more heterogeneous, and
experience greater diversity of weed, pest and disease pressure
and use more diverse rotational designs and soil management,
tillage, fertilization and crop protection protocols. To develop vari-
eties suitable to these diverse agro-environments it is essential
to integrate evolutionary breeding [161] with strong participatory
selection components [150,160].  This type of breeding strategy
utilizes a combination of natural selection (survival and more pro-
genies of the fittest genotype due to adaptation to local conditions)
and farmer selection (active selection of genotypes that fit the
defined breeding goals) to develop varieties with optimal adapta-
tion to specific organic farming systems. Such integrated breeding
approaches are known as evolutionary participatory breeding (EPB)
[150], which utilizes the skills and knowledge of both breeders and
farmers to develop heterogeneous landrace populations, and has
demonstrated to be an effective breeding method for both tradi-
tional and modern farmers throughout the world [150].

For example, for broccoli, the Oregon State University (OSU)
programme has a breeding project focused on developing open-
pollinated (OP) broccoli varieties for organic production using a
farmer participatory approach. The rationale for the project is that
recently very few OP broccoli varieties have been developed with
the productivity and quality traits available in F1 hybrids. In addi-
tion, few of the contemporary varieties have been bred in and for
organic systems. Many organic growers would like a broccoli vari-
ety that is well adapted to their individual system and environment,
and one of which they can save their own seed. After assemblage
and random mating of the initial population an EPB programme
was initiated. Seed of the OP population was  distributed to partici-
pating farmers who  grew and selected the most productive plants

at their location, then allowed them to intercross, and produce
seed. A portion of the seed was returned to OSU, where samples
received would be combined and then redistributed to farmers in
the next growing season. With support from the Organic Seed Part-
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ership, three cycles were completed by 2009. Current efforts are
ocused on working with specific farmers and institutions to reduce
he variability in the population for economically important traits
sing plant to row half-sib selection with the intention of develop-

ng varieties that are specifically adapted to grower’s site-specific
onditions.

2.4. Indirect phenotypic selection methods

Breeding for biotic stress resistance in wheat still relies mainly
n phenotypic selection protocols using natural or artificial infec-
ion pressure. However, quantitative resistance to several key
iseases in wheat is difficult to assess reliably by phenotypic
ssessments (especially in early stages of plant development) and
equires expensive experimental approaches [162]. Some morpho-
ogic traits have been described that correlated with quantitative
iotic or abiotic stress resistance. These included leaf tip necro-
is as an indicator for leaf rust resistance [163], stem thickness
or lodging resistance [164,165],  cuticular wax and stem length as
ndicators for Septoria resistance [166], and vigorous early growth
s indicator for weed competitiveness and nutrient-use efficiency.
owever, indirect selection for such morphological traits has not
et been widely implemented in plant breeding programmes. Fur-
her applied research is therefore needed to verify the selection
ain in a wider range of wheat germplasm.

2.5. Molecular marker selection

With the advent of molecular markers it became possible
o dissect quantitatively inherited traits into single genes. For
heat, the identification of such quantitative trait loci (QTL)
sing segregating populations of parents with contrasting resis-
ance phenotypes [163], has proved to be difficult, due to
he complex hexaploid genetics of wheat [167–169]. However,
TL for resistance to several diseases (e.g., leaf rust, Fusar-

um head blight, common bunt, Septoria) have been identified
n hexaploid wheat. Presently, the implementation of marker-
ssisted selection into commercial wheat breeding programmes
s still limited and restricted to marker-assisted backcross breed-
ng for the introgression of major genes from unadapted material
r the pyramidization of resistance genes. However, the rapid
evelopment of new, cost-efficient, high-throughput marker sys-
ems as well as great improvement of association mapping is
xpected to allow better coverage of the wheat genome and
ay  improve the ability to identify QTL for oligogenically inher-

ted traits of interest to organic and low-input systems, as well
s for the monitoring of the level of genetic diversity present
n the wheat germplasm [170–172]. At Oregon State University,
reeding for late blight resistance has used pedigree selection
nder disease pressure. A marker-assisted breeding approach
as been used to develop high-flavonoid tomato lines. More
han 50% of the sequenced tomato genome has been assembled
http://sgn.cornell.edu/about/tomato sequencing.pl;  accessed 23

arch 2010) and as annotated sequence becomes available, it will
e possible to identify and directly select candidate genes.

3. Evaluation of breeding methods

Another issue that has to be taken into account with respect
o appropriateness of applied breeding methodologies for organic
griculture is their relative acceptability under organic farming
rinciples (e.g., [151,173]).  Under current organic farming regu-
ations in the USA and Europe, genetically engineered crops are
rohibited from use in organic production. However, it is currently
nclear how to deal with techniques that are included in the defi-
ition of genetic engineering according to the IFOAM norms [174]
n Journal of Life Sciences 58 (2011) 193– 205 201

but not in the EC directive on genetic engineering, such as cell
fusion for introducing cytoplasmic male sterility (CMS) from other
species to ease the F1 hybrid production as applied, e.g., in Brassi-
cas (e.g., [175]). Somatic hybridization has been used to transfer
the B. oleracea nucleus into radish cytoplasm [176], in order to
achieve the most widely used form (Ogura) of CMS. The original
Ogura CMS  was not economically useful because the CMS  lines
exhibited low temperature chlorosis. It was not until further in
vitro manipulation that replaced the radish chloroplast genome
with the original parental species that temperature insensitive CMS
lines were developed [177]. Many broccoli hybrids currently on
the market are produced on male sterile mother plants derived
from such cell fusion [178], and it is difficult for growers to obtain
information on the breeding history as declaration is not manda-
tory. In contrast to the cell fusion derived sterility, F1 hybrid seed
of broccoli can also be produced using the natural sporophytic
self-incompatibility (SI) system, preventing self-pollination of the
mother plants. However, the expression of the SI system depends
on the environmental conditions during flowering and does not
result in 100% F1 seeds as obtained by the cell-fusion derived
CMS  system. Broccoli can be selfed manually using bud pollination
or CO2 treatment. Most modern material for F1 variety develop-
ment has been subjected to inbreeding and there are inbred lines
that are self-fertile. Breeding programmes use a combination of
inbreeding to develop inbred lines, then combining these to pro-
duce F1 hybrids. Broccoli is relatively easy to culture in vitro and
can be transformed. It is also possible to produce doubled hap-
loids through anther culture. Therefore, genetic engineering, cell
fusion and other techniques can be extensively used in conven-
tional breeding programmes of these Brassica crops, resulting in
varieties that are not in agreement with the organic principles.
Without special breeding efforts for the organic sector, there is a
great risk that in future the needs of organic farmers will not be
met.

In tomato, the seed companies commonly rely on hand labour
to produce F1 hybrid seed. Most contemporary commercial tomato
varieties are hybrids, but many organic growers in the USA and
some small growers in Europe want to be able to save their own
seed. Because tomato is highly self-pollinated, it is possible to
develop and release pure lines that can be propagated by seed.
There will be a need for both types of varieties, depending on mar-
ket demands and needs of the grower.

In wheat, natural CMS  is available for F1 hybrid seed production,
but hybrid varieties of wheat are of minor importance.

14. Discussion and conclusions

Over the last 40 years, organic farmers have mainly aimed
at optimizing their farming systems by agronomic approaches.
More and more the sector now also aims at genetic improve-
ments to enhance yield stability under low-input conditions. Most
of the available information on the differences in performances
and requirements of varieties between organic, low-input and con-
ventional high-input agriculture is concentrated on cereals. In this
field already several breeding programmes have been established
and several varieties have been released on the market. For the
vegetable sector, only a few organic farming focused breeding pro-
grammes have been started so far, and farmers still largely depend
on varieties bred for the conventional, high-input farming systems.

Although many breeding goals are identical for conventional
and organic production, such as yield and disease resistance, the

priorities can nevertheless be different. This is mainly due to the
fact that conventional agriculture is able to compensate for the
lack of certain traits via inputs, including inorganic fertilizers and
chemosynthetic crop protection chemicals that are not available

http://sgn.cornell.edu/about/tomato_sequencing.pl
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or use in organic farming systems. Additionally, some genetic traits
hat are of high priority in conventional systems are needed mainly
ecause of inputs exclusively used in conventional systems (e.g.,
owdery mildew and lodging incidence in cereals are increased
y inorganic-N inputs) and therefore less important for varieties
sed in organic systems. Therefore the use of breeding programmes
hat are focused on conventional farming selection priorities can
esult in varieties that perform well under high-input but fail under
ow-input and organic conditions.

Many traits desired for varieties for organic and low-input farm-
ng systems are required to provide overall yield stability and
nclude morphological and physiological characteristics, such as
lant and root architecture, and vigour. Furthermore, the organic
ector demands breeding to focus on optimizing soil processes rel-
vant for plant nutrition, soil fertility and crop disease resistance.
he currently available literature (see above) already shows the
otential of selection for genotypes that can efficiently establish
nd exploit associations with beneficial soil micro-organisms espe-
ially with respect to positive effects on nutrient and water uptake,
ut also yield stability via improved disease and pest resistance and
ompetitiveness against weeds.

Performance (yield, yield stability, quality) is also linked to tol-
rance to abiotic and biotic stress, which are complex inherited
raits with high genotype × environment interactions, resulting
n the ‘masking’ of the genotypic value of breeding lines. The
mprovement of all these traits with the limited resources avail-
ble in organic farming focused breeding programmes is therefore
xtremely challenging [6,147]

An important strategy to further improve performance and
roduct quality parameters in organic and low-input production
ystems is to integrate the development of novel genotypes and
gronomic approaches. However, there may  be significant geno-
ype × environment × management interactions and the organic
ector is known to use more variable management systems. For
xample, winter wheat may  be grown (1) in stockless arable rota-
ions (where often two or more wheat or other cereal crops are
rown in succession) or (2) as part of more diverse rotations (e.g.,
n farms that also produce forages for livestock, vegetables, pulses
r potato) [10,179–181]. It is therefore more important to eval-
ate genotype × management interactions in different agro- and
edo-climatic regions as part of organic farming focused breeding
rogrammes than in conventional breeding programmes.

One of the major points of discussion among breeders is whether
eparate organic breeding programmes are necessary, or can selec-
ion under conventional growing conditions also be effective if

ore attention is paid to certain desired traits? The efficacy of
uch approaches may  differ for different traits. For example, for
heat, indirect selection under conventional high-input conditions

s quite effective for traits with high heritability, including early
aturity, plant height, and 1000 kernel weight. However, this is

ot necessarily the case for quantitative traits characterized by high
enotype × environment interactions, like grain yield or end-use
uality traits [5,16,182].  Based on a study of a segregating spring
heat population tested under organic and conventional farming

onditions, Reid et al. [183] clearly demonstrated the superiority
f direct selection (under organic farming) compared with indirect
election (under conventional farming) for grain yield and yield
omponents. Therefore it is necessary to select under organic man-
gement at least in the advanced breeding generations [183].

In some cases the size of the organic market is too small to
e economically attractive for professional breeding companies.
articipatory approaches could represent an efficient alternative

o develop new varieties for organic farming and should be fur-
her developed to reduce the reliance on commercial conventional
arming focused breeding companies. However, more recently
eveloped collaborative strategies involving both breeding com-
n Journal of Life Sciences 58 (2011) 193– 205

panies and farmers and other supply chain stakeholder should also
be encouraged to utilize commercial breeding expertise and facil-
ities where this is possible. This is an important opportunity not
only to integrate farmers’ and breeders’ knowledge, but also the
farmers’ and breeders’ eye.

Furthermore, it is encouraging that several breeding companies
now consider organic as an interesting market to be involved in.
This is often based, at least partially, on the anticipation that their
existing conventional farming markets will in the future demand
varieties with traits that are currently mainly requested by the
organic and low-input sector (e.g., nutrient-use efficiency and spe-
cific product quality and resistance traits).

Finally, the introgression of traits urgently needed by the farm-
ers to optimize organic farming systems and improve yield stability
will also have a positive influence on conventional production sys-
tems that aim to reduce agrochemical input use while improving
environmental impacts and long-term agricultural sustainability.
Breeding for organic agriculture therefore deserves significantly
more attention and support.
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