2 research outputs found

    Aspects of gastrointestinal motility in relation to the development of digestive function in neonates

    Get PDF
    Abstract Gastrointestinal motility is responsible for mixing and transport of digesta and elimination of undigested residues. The basis for the motility is the electrical activity of the gastrointestinal smooth muscle, which has a recurring pattern. In the small intestine of mature animals, this pattern is associated with periodic fluctuations of mesenteric blood flow, and gastric, pancreatic and biliary secretion, and with intestinal absorption. In general, feeding disrupts the cyclic pattern in the stomach and small intestine, replacing it with a continuous post-feeding pattern, and the duration of the post-feeding pattern is dependent on animal species, composition of the diet and feeding regime. The perinatal and weaning periods manifest drastic changes in digestive function and, thus, in gastrointestinal motility. Due to difficulties in performing studies in perinatal and neonatal animals, only few data on the development of gastrointestinal motility, and its synchronisation with other digestive functions, are available. Whereas some studies in the literature indicate that the development of gastrointestinal motility follows the maturation of the regulatory mechanisms, recent data also suggest that changes in gastrointestinal motility around birth and weaning reflect changes in nutrient supply. This paper deals with some aspects of gastrointestinal motility, primarily in the gastric antrum and small intestine, of neonatal animals. Certainly, changes in gastrointestinal motility in early life could be of paramount importance for proper digestive function and this research area requires further attention

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362
    corecore