1,916 research outputs found

    Reducing Urban Pollution Exposure from Road Transport(RUPERT)

    Get PDF
    This paper presents the preliminary results of a two-year study on reducing urban pollution exposure from road transport (RUPERT). The main aim of this project is to develop a new modelling framework for nitrogen dioxide, carbon monoxide and particulate matter to simulate exposures of different population groups across a city, and to assess the impact of roadside concentrations on these exposures. This will be achieved by modelling the frequency distribution of personal exposures (PEFDs) as a function of urban background and roadside concentrations, under different traffic conditions. The modelling approach combines new and existing models relating traffic and air pollution data, with particular emphasis of the impact of congestion, and the probabilistic modelling framework of personal exposure. Modelling of roadside concentrations consists of two main elements, namely the analysis of concentrations patterns at different roadside sites and of the relationship between traffic conditions and added roadside pollution. Roadside concentrations are predicted using empirically derived relationships; statistical models, novel statistics and artificial neural networks namely feed forward neural network and radial basis neural network. The exposure modelling is carried out by linking two models: the INDAIR model, which is designed to simulate probabilistically diurnal profiles of air pollutant concentrations in a range of microenvironments, and the EXPAIR model, which is designed to simulate population exposure patterns based on population time-activity patterns and a library of micro-environmental concentrations derived from the INDAIR model

    Cause of death and predictors of mortality in a community-based cohort of people with epilepsy.

    Get PDF
    OBJECTIVE: The risk of premature mortality is increased in people with epilepsy. The reasons for this and how it may relate to epilepsy etiology remain unclear. METHODS: The National General Practice Study of Epilepsy is a prospective, community-based cohort that includes 558 people with recurrent unprovoked seizures of whom 34% died during almost 25 years of follow-up. We assessed the underlying and immediate causes of death and their relationship to epilepsy etiology. Psychiatric and somatic comorbidities of epilepsy as predictors of mortality were scrutinized using adjusted Cox proportional hazards models. RESULTS: The 3 most common underlying causes of death were noncerebral neoplasm, cardiovascular, and cerebrovascular disease, accounting for 59% (111/189) of deaths, while epilepsy-related causes (e.g., sudden unexplained death in epilepsy) accounted for 3% (6/189) of deaths. In 23% (43/189) of individuals, the underlying cause of death was directly related to the epilepsy etiology; this was significantly more likely if death occurred within 2 years of the index seizure (percent ratio 4.28 [95% confidence interval 2.63-6.97]). Specific comorbidities independently associated with increased risk of mortality were neoplasms (primary cerebral and noncerebral neoplasm), certain neurologic diseases, and substance abuse. CONCLUSIONS: Comorbid diseases are important causes of death, as well as predictors of premature mortality in epilepsy. There is an especially strong relationship between cause of death and epilepsy etiology in the first 2 years after the index seizure. Addressing these issues may help stem the tide of premature mortality in epilepsy

    Body Composition Profiling in the UK Biobank Imaging Study

    Get PDF
    Objective To investigate the value of imaging-based multivariable body composition profiling by describing its association with coronary heart disease (CHD), type 2 diabetes (T2D), and metabolic health on individual and population levels. Methods The first 6,021 participants scanned by UK Biobank were included. Body composition profiles (BCPs) were calculated including abdominal subcutaneous adipose tissue, visceral adipose tissue (VAT), thigh muscle volume, liver fat, and muscle fat infiltration (MFI), determined using magnetic resonance imaging. Associations between BCP and metabolic status were investigated using matching procedures and multivariable statistical modelling. Results Matched control analysis showed higher VAT and MFI was associated with CHD and T2D (p<0.001). Higher liver fat was associated with T2D (p<0.001) and lower liver fat with CHD (p<0.05), matching on VAT. Multivariable modelling showed lower VAT and MFI was associated with metabolic health (p<0.001), liver fat was non-significant. Associations remained significant adjusting for sex, age, BMI, alcohol, smoking, and physical activity. Conclusions Body composition profiling enabled an intuitive visualization of body composition and showed the complexity of associations between fat distribution and metabolic status, stressing the importance of a multivariable approach. Different diseases were linked to different BCPs, which could not be described by a single fat compartment alone

    Representation theory of super Yang-Mills algebras

    Get PDF
    We study in this article the representation theory of a family of super algebras, called the \emph{super Yang-Mills algebras}, by exploiting the Kirillov orbit method \textit{\`a la Dixmier} for nilpotent super Lie algebras. These super algebras are a generalization of the so-called \emph{Yang-Mills algebras}, introduced by A. Connes and M. Dubois-Violette in \cite{CD02}, but in fact they appear as a "background independent" formulation of supersymmetric gauge theory considered in physics, in a similar way as Yang-Mills algebras do the same for the usual gauge theory. Our main result states that, under certain hypotheses, all Clifford-Weyl super algebras \Cliff_{q}(k) \otimes A_{p}(k), for p3p \geq 3, or p=2p = 2 and q2q \geq 2, appear as a quotient of all super Yang-Mills algebras, for n3n \geq 3 and s1s \geq 1. This provides thus a family of representations of the super Yang-Mills algebras

    Superconductor coupled to two Luttinger liquids as an entangler for electron spins

    Full text link
    We consider an s-wave superconductor (SC) which is tunnel-coupled to two spatially separated Luttinger liquid (LL) leads. We demonstrate that such a setup acts as an entangler, i.e. it creates spin-singlets of two electrons which are spatially separated, thereby providing a source of electronic Einstein-Podolsky-Rosen pairs. We show that in the presence of a bias voltage, which is smaller than the energy gap in the SC, a stationary current of spin-entangled electrons can flow from the SC to the LL leads due to Andreev tunneling events. We discuss two competing transport channels for Cooper pairs to tunnel from the SC into the LL leads. On the one hand, the coherent tunneling of two electrons into the same LL lead is shown to be suppressed by strong LL correlations compared to single-electron tunneling into a LL. On the other hand, the tunneling of two spin-entangled electrons into different leads is suppressed by the initial spatial separation of the two electrons coming from the same Cooper pair. We show that the latter suppression depends crucially on the effective dimensionality of the SC. We identify a regime of experimental interest in which the separation of two spin-entangled electrons is favored. We determine the decay of the singlet state of two electrons injected into different leads caused by the LL correlations. Although the electron is not a proper quasiparticle of the LL, the spin information can still be transported via the spin density fluctuations produced by the injected spin-entangled electrons.Comment: 15 pages, 2 figure

    A New Neutrino Cross Section Database

    Full text link
    We describe a new web based data resource being developed to provide access to accurate and validated cross sections of low energy neutrino and antineutrino interactions. The proposed content of this database are outlined which cover total and differential cross from inclusive, quasi-elastic and exclusive pion production processes from charged and neutral current interactions. Efforts to obtain these data, which come mainly from old bubble chamber experiments, are described as well as the implementation of an embryonic web site to make the resource generally accessible.Comment: 6 pages, 3 figures, To appear in the proceedings of the 3rd International Workshop on Neutrino Nucleus Interactions in the few GeV region (NuInt04), Gran Sasso, Assergi, Italy, 17-21 Mar 200

    Efficient Algorithm on a Non-staggered Mesh for Simulating Rayleigh-Benard Convection in a Box

    Full text link
    An efficient semi-implicit second-order-accurate finite-difference method is described for studying incompressible Rayleigh-Benard convection in a box, with sidewalls that are periodic, thermally insulated, or thermally conducting. Operator-splitting and a projection method reduce the algorithm at each time step to the solution of four Helmholtz equations and one Poisson equation, and these are are solved by fast direct methods. The method is numerically stable even though all field values are placed on a single non-staggered mesh commensurate with the boundaries. The efficiency and accuracy of the method are characterized for several representative convection problems.Comment: REVTeX, 30 pages, 5 figure

    Magnetic Fields, Relativistic Particles, and Shock Waves in Cluster Outskirts

    Full text link
    It is only now, with low-frequency radio telescopes, long exposures with high-resolution X-ray satellites and gamma-ray telescopes, that we are beginning to learn about the physics in the periphery of galaxy clusters. In the coming years, Sunyaev-Zeldovich telescopes are going to deliver further great insights into the plasma physics of these special regions in the Universe. The last years have already shown tremendous progress with detections of shocks, estimates of magnetic field strengths and constraints on the particle acceleration efficiency. X-ray observations have revealed shock fronts in cluster outskirts which have allowed inferences about the microphysical structure of shocks fronts in such extreme environments. The best indications for magnetic fields and relativistic particles in cluster outskirts come from observations of so-called radio relics, which are megaparsec-sized regions of radio emission from the edges of galaxy clusters. As these are difficult to detect due to their low surface brightness, only few of these objects are known. But they have provided unprecedented evidence for the acceleration of relativistic particles at shock fronts and the existence of muG strength fields as far out as the virial radius of clusters. In this review we summarise the observational and theoretical state of our knowledge of magnetic fields, relativistic particles and shocks in cluster outskirts.Comment: 34 pages, to be published in Space Science Review

    Water-like anomalies for core-softened models of fluids: One dimension

    Full text link
    We use a one-dimensional (1d) core-softened potential to develop a physical picture for some of the anomalies present in liquid water. The core-softened potential mimics the effect of hydrogen bonding. The interest in the 1d system stems from the facts that closed-form results are possible and that the qualitative behavior in 1d is reproduced in the liquid phase for higher dimensions. We discuss the relation between the shape of the potential and the density anomaly, and we study the entropy anomaly resulting from the density anomaly. We find that certain forms of the two-step square well potential lead to the existence at T=0 of a low-density phase favored at low pressures and of a high-density phase favored at high pressures, and to the appearance of a point CC' at a positive pressure, which is the analog of the T=0 ``critical point'' in the 1d1d Ising model. The existence of point CC' leads to anomalous behavior of the isothermal compressibility KTK_T and the isobaric specific heat CPC_P.Comment: 22 pages, 7 figure
    corecore