Abstract

We study in this article the representation theory of a family of super algebras, called the \emph{super Yang-Mills algebras}, by exploiting the Kirillov orbit method \textit{\`a la Dixmier} for nilpotent super Lie algebras. These super algebras are a generalization of the so-called \emph{Yang-Mills algebras}, introduced by A. Connes and M. Dubois-Violette in \cite{CD02}, but in fact they appear as a "background independent" formulation of supersymmetric gauge theory considered in physics, in a similar way as Yang-Mills algebras do the same for the usual gauge theory. Our main result states that, under certain hypotheses, all Clifford-Weyl super algebras \Cliff_{q}(k) \otimes A_{p}(k), for p3p \geq 3, or p=2p = 2 and q2q \geq 2, appear as a quotient of all super Yang-Mills algebras, for n3n \geq 3 and s1s \geq 1. This provides thus a family of representations of the super Yang-Mills algebras

    Similar works