We study in this article the representation theory of a family of super
algebras, called the \emph{super Yang-Mills algebras}, by exploiting the
Kirillov orbit method \textit{\`a la Dixmier} for nilpotent super Lie algebras.
These super algebras are a generalization of the so-called \emph{Yang-Mills
algebras}, introduced by A. Connes and M. Dubois-Violette in \cite{CD02}, but
in fact they appear as a "background independent" formulation of supersymmetric
gauge theory considered in physics, in a similar way as Yang-Mills algebras do
the same for the usual gauge theory. Our main result states that, under certain
hypotheses, all Clifford-Weyl super algebras \Cliff_{q}(k) \otimes A_{p}(k),
for p≥3, or p=2 and q≥2, appear as a quotient of all super
Yang-Mills algebras, for n≥3 and s≥1. This provides thus a family
of representations of the super Yang-Mills algebras