44 research outputs found

    Boost Invariance and Multiplicity Dependence of the Charge Balance Functionin π+p\pi^{+}p and K+pK^{+}p Collisions at s=22\sqrt s= 22 GeV/c

    Get PDF
    Boost invariance and multiplicity dependence of the charge balance function are studied in \pi^{+}\rp and \rK^{+}\rp collisions at 250 GeV/cc incident beam momentum. Charge balance, as well as charge fluctuations, are found to be boost invariant over the whole rapidity region, but both depend on the size of the rapidity window. It is also found that the balance function becomes narrower with increasing multiplicity, consistent with the narrowing of the balance function when centrality and/or system size increase, as observed in current relativistic heavy ion experiments.Comment: 4 pages, 5 figures, Revte

    Estimation of Hydrodynamical Model Parameters from the Invariant Spectrum and the Bose-Einstein Correlations of pi-mesons Produced in (pi+/K+)p Interactions at 250 GeV/c

    Full text link
    The invariant spectra of pi- mesons produced in (pi+/K+)p interactions at 250 GeV/c are analysed in the framework of the hydrodynamical model of three-dimensionally expanding cylindrically symmetric finite systems. A satisfactory description of experimental data is achieved. The data favour the pattern according to which the hadron matter undergoes predominantly longitudinal expansion and non-relativistic transverse expansion with mean transverse velocity = 0.20(7), and is characterized by a large temperature inhomogeneity in the transverse direction: the extracted freeze-out temperature at the center of the tube and at the transverse rms radius are 140(3) MeV and 82(7) MeV, respectively. The width of the (longitudinal) space-time rapidity distribution of the pion source is found to be Delta eta = 1.36(2). Combining this estimate with results of the Bose-Einstein correlation analysis in the same experiment, one extracts a mean freeze-out time of the source of = 1.4(1) fm/c and its transverse geometrical rms radius, R_G (rms)=1.2(2) fm.Comment: latex, 14 pages, 5 figure

    Entropy Analysis in \pi^{+}\rp and \rK^{+}\rp Collisions at s=22\sqrt{s}=22 GeV

    Full text link
    The entropy properties are analyzed by Ma's coincidence method in \pi^{+}\rp and \rK^{+}\rp collisions of the NA22 experiment at 250 GeV/cc incident momentum. By using the R\'{e}nyi entropies, we test the scaling law and additivity properties in rapidity space. The behavior of the R\'{e}nyi entropies as a function of the average number of particles is investigated. The results are compared with those from the {\sc Pythia} Monte Carlo event generator.Comment: LaTeX, 11 pages, 5 figure to be appeared in Acta Phys. Pol.

    Estimation of hydrodynamical model parameters from the invariant spectrum and the Bose-Einstein correlations of π\pi-mesons produced in (π+/K+)p\pi^{+}/K^{+})p interactions at 250 GeV/c

    Get PDF
    The invariant spectra of pi- mesons produced in (pi+/K+)p interactions at 250 GeV/c are analysed in the framework of the hydrodynamical model of three-dimensionally expanding cylindrically symmetric finite systems. A satisfactory description of experimental data is achieved. The data favour the pattern according to which the hadron matter undergoes predominantly longitudinal expansion and non-relativistic transverse expansion with mean transverse velocity = 0.20(7), and is characterized by a large temperature inhomogeneity in the transverse direction: the extracted freeze-out temperature at the center of the tube and at the transverse rms radius are 140(3) MeV and 82(7) MeV, respectively. The width of the (longitudinal) space-time rapidity distribution of the pion source is found to be Delta eta = 1.36(2). Combining this estimate with results of the Bose-Einstein correlation analysis in the same experiment, one extracts a mean freeze-out time of the source of = 1.4(1) fm/c and its transverse geometrical rms radius, R_G (rms)=1.2(2) fm.The invariant spectra of pi- mesons produced in (pi+/K+)p interactions at 250 GeV/c are analysed in the framework of the hydrodynamical model of three-dimensionally expanding cylindrically symmetric finite systems. A satisfactory description of experimental data is achieved. The data favour the pattern according to which the hadron matter undergoes predominantly longitudinal expansion and non-relativistic transverse expansion with mean transverse velocity = 0.20(7), and is characterized by a large temperature inhomogeneity in the transverse direction: the extracted freeze-out temperature at the center of the tube and at the transverse rms radius are 140(3) MeV and 82(7) MeV, respectively. The width of the (longitudinal) space-time rapidity distribution of the pion source is found to be Delta eta = 1.36(2). Combining this estimate with results of the Bose-Einstein correlation analysis in the same experiment, one extracts a mean freeze-out time of the source of = 1.4(1) fm/c and its transverse geometrical rms radius, R_G (rms)=1.2(2) fm

    Self-affine scaling from non-integer phase-space partition in π+p\pi^{+}p and K+pK^{+}p collisions at 250 GeV/cc

    Get PDF
    A factorial-moment analysis with real (integer and non-integer) phase space partition is applied to π+\pi^+p and K+^+p collisions at 250 GeV/cc. Clear evidence is shown for self-affine rather than self-similar power-law scaling in multiparticle production. The three-dimensional self-affine second-order scaling exponent is determined to be 0.061±\pm0.010.A factorial-moment analysis with real (integer and non-integer) phase space partition is applied to π+\pi^+p and K+^+p collisions at 250 GeV/cc. Clear evidence is shown for self-affine rather than self-similar power-law scaling in multiparticle production. The three-dimensional self-affine second-order scaling exponent is determined to be 0.061±\pm0.010.A factorial-moment analysis with real (integer and non-integer) phase space partition is applied to π+\pi^+p and K+^+p collisions at 250 GeV/cc. Clear evidence is shown for self-affine rather than self-similar power-law scaling in multiparticle production. The three-dimensional self-affine second-order scaling exponent is determined to be 0.061±\pm0.010.A factorial-moment analysis with real (integer and non-integer) phase space partition is applied to π + p and K + p collisions at 250 GeV/ c . Clear evidence is shown for self-affine rather than self-similar power-law scaling in multiparticle production. The three-dimensional self-affine second-order scaling exponent is determined to be 0.061±0.010

    Large Self-affine fractality in \p^+p and K+^+p collisions at 250 GeV/cc

    Full text link
    Taking into account the anisotropy of phase space in multiparticle production, a self-affine analysis of factorial moments was carried out on the NA22 data for \p^+\Pp and \PK^+\Pp collisions at 250 GeV/cc. Within the transverse plane, the Hurst exponents measuring the anisotropy are consistent with unit value (i.e. no anisotropy). They are, however, only half that value when the longitudinal direction is compared to the transverse ones. Fractality, indeed, turns out to be self-affine rather than self-similar in multiparticle production. In three-dimensional phase space, power-law scaling is observed to be better realized in self-affine than in self-similar analysis.Comment: 10 pages and 4 figure

    Longitudinal scaling property of the charge balance function in Au + Au collisions at 200 GeV

    Get PDF
    We present measurements of the charge balance function, from the charged particles, for diverse pseudorapidity and transverse momentum ranges in Au + Au collisions at 200 GeV using the STAR detector at RHIC. We observe that the balance function is boost-invariant within the pseudorapidity coverage [-1.3, 1.3]. The balance function properly scaled by the width of the observed pseudorapidity window does not depend on the position or size of the pseudorapidity window. This scaling property also holds for particles in different transverse momentum ranges. In addition, we find that the width of the balance function decreases monotonically with increasing transverse momentum for all centrality classes.Comment: 6 pages, 3 figure

    Transverse energy flow in meson-proton and meson-nucleus interactions at 250 GeV/c

    No full text
    corecore