124 research outputs found

    Nitrous oxide in coastal waters

    Get PDF
    We determined atmospheric and dissolved nitrous oxide (N2O) in the surface waters of the central North Sea, the German Bight, and the Gironde estuary. The mean saturations were 104 ± 1% (central North Sea, September 1991), 101 ± 2% (German Bight, September 1991), 99 ± 1% (German Bight September 1992), and 132% (Gironde estuary, November 1991). To evaluate the contribution of coastal areas and estuaries to the oceanic emissions we assembled a compilation of literature data. We conclude that the mean saturations in coastal regions (with the exception of estuaries and regions with upwelling phenomena) are only slightly higher than in the open ocean. However, when estuarine and coastal upwelling regions are included, a computation of the global oceanic N2O flux indicates that a considerable portion (approximately 60%) of this flux is from coastal regions, mainly due to high emissions from estuaries. We estimate, using two different parameterizations of the air-sea exchange process, an annual global sea-to-air flux of 11–17 Tg N2O. Our results suggest a serious underestimation of the flux from coastal regions in widely used previous estimates

    Nitrous oxide emissions from the Arabian Sea

    Get PDF
    Dissolved and atmospheric nitrous oxide (N2O) were measured on the legs 3 and 5 of the R/V Meteor cruise 32 in the Arabian Sea. A cruise track along 65°E was followed during both the intermonsoon (May 1995) and the southwest (SW) monsoon (July/August 1995) periods. During the second leg the coastal and open ocean upwelling regions off the Arabian Peninsula were also investigated. Mean N2O saturations for the oceanic regions of the Arabian Sea were in the range of 99–103% during the intermonsoon and 103–230% during the SW monsoon. Computed annual emissions of 0.8–1.5 Tg N2O for the Arabian Sea are considerably higher than previous estimates, indicating that the role of upwelling regions, such as the Arabian Sea, may be more important than previously assumed in global budgets of oceanic N2O emissions

    Integrating biomass, sulphate and sea-salt aerosol responses into a microphysical chemical parcel model: implications for climate studies

    Get PDF
    Aerosols are known to influence significantly the radiative budget of the Earth. Although the direct effect (whereby aerosols scatter and absorb solar and thermal infrared radiation) has a large perturbing influence on the radiation budget, the indirect effect (whereby aerosols modify the microphysical and hence the radiative properties and amounts of clouds) poses a greater challenge to climate modellers. This is because aerosols undergo chemical and physical changes while in the atmosphere, notably within clouds, and are removed largely by precipitation. The way in which aerosols are processed by clouds depends on the type, abundance and the mixing state of the aerosols concerned. A parametrization with sulphate and sea-salt aerosol has been successfully integrated within the Hadley Centre general circulation model (GCM). The results of this combined parametrization indicate a significantly reduced role, compared with previous estimates, for sulphate aerosol in cloud droplet nucleation and, consequently, in indirect radiative forcing. However, in this bicomponent system, the cloud droplet number concentration, Nd (a crucial parameter that is used in GCMs for radiative transfer calculations), is a smoothly varying function of the sulphate aerosol loading. Apart from sea-salt and sulphate aerosol particles, biomass aerosol particles are also present widely in the troposphere. We find that biomass smoke can significantly perturb the activation and growth of both sulphate and sea-salt particles. For a fixed salt loading, Nd increases linearly with modest increases in sulphate and smoke masses, but significant nonlinearities are observed at higher non-sea-salt mass loadings. This non-intuitive Nd variation poses a fresh challenge to climate modellers

    Aerosol particle number size distributions and particulate light absorption at the ZOTTO tall tower (Siberia), 2006–2009

    Get PDF
    This paper analyses aerosol particle number size distributions, particulate absorption at 570 nm wavelength and carbon monoxide (CO) measured between September 2006 and January 2010 at heights of 50 and 300 m at the Zotino Tall Tower Facility (ZOTTO) in Siberia (60.8° N; 89.35° E). Average number, surface and volume concentrations are broadly comparable to former studies covering shorter observation periods. Fits of multiple lognormal distributions yielded three maxima in probability distribution of geometric mean diameters in the Aitken and accumulation size range and a possible secondary maximum in the nucleation size range below 25 nm. The seasonal cycle of particulate absorption shows maximum concentrations in high winter (December) and minimum concentrations in mid-summer (July). The 90th percentile, however, indicates a secondary maximum in July/August that is likely related to forest fires. The strongly combustion derived CO shows a single winter maximum and a late summer minimum, albeit with a considerably smaller seasonal swing than the particle data due to its longer atmospheric lifetime. Total volume and even more so total number show a more complex seasonal variation with maxima in winter, spring, and summer. A cluster analysis of back trajectories and vertical profiles of the pseudo-potential temperature yielded ten clusters with three levels of particle number concentration: Low concentrations in Arctic air masses (400–500 cm−3), mid-level concentrations for zonally advected air masses from westerly directions between 55° and 65° N (600–800 cm−3), and high concentrations for air masses advected from the belt of industrial and population centers in Siberia and Kazakhstan (1200 cm−3). The observational data is representative for large parts of the troposphere over Siberia and might be particularly useful for the validation of global aerosol transport models

    Hygroscopicity distribution concept for measurement data analysis and modeling of aerosol particle mixing state with regard to hygroscopic growth and CCN activation

    Get PDF
    This paper presents a general concept and mathematical framework of particle hygroscopicity distribution for the analysis and modeling of aerosol hygroscopic growth and cloud condensation nucleus (CCN) activity. The cumulative distribution function of particle hygroscopicity, H(κ, Dd) is defined as the number fraction of particles with a given dry diameter, Dd, and with an effective hygroscopicity parameter smaller than the parameter κ. From hygroscopicity tandem differential mobility analyzer (HTDMA) and size-resolved CCN measurement data, H(κ, Dd) can be derived by solving the κ-Köhler model equation. Alternatively, H(κ, Dd) can be predicted from measurement or model data resolving the chemical composition of single particles. A range of model scenarios are used to explain and illustrate the concept, and exemplary practical applications are shown with HTDMA and CCN measurement data from polluted megacity and pristine rainforest air. Lognormal distribution functions are found to be suitable for approximately describing the hygroscopicity distributions of the investigated atmospheric aerosol samples. For detailed characterization of aerosol hygroscopicity distributions, including externally mixed particles of low hygroscopicity such as freshly emitted soot, we suggest that size-resolved CCN measurements with a wide range and high resolution of water vapor supersaturation and dry particle diameter should be combined with comprehensive HTDMA measurements and size-resolved or single-particle measurements of aerosol chemical composition, including refractory components. In field and laboratory experiments, hygroscopicity distribution data from HTDMA and CCN measurements can complement mixing state information from optical, chemical and volatility-based techniques. Moreover, we propose and intend to use hygros

    Water uptake by biomass burning aerosol at sub- and supersaturated conditions: closure studies and implications for the role of organics

    Get PDF
    We investigate the CCN activity of freshly emitted biomass burning particles and their hygroscopic growth at a relative humidity (RH) of 85%. The particles were produced in the Mainz combustion laboratory by controlled burning of various wood types. The water uptake at sub- and supersaturations is parameterized by the hygroscopicity parameter, κ (c.f. Petters and Kreidenweis, 2007). For the wood burns, κ is low, generally around 0.06. The main emphasis of this study is a comparison of κ derived from measurements at sub- and supersaturated conditions (κG and κCCN), in order to see whether the water uptake at 85% RH can predict the CCN properties of the biomass burning particles. Differences in κGand κCCN can arise through solution non-idealities, the presence of slightly soluble or surface active compounds, or non-spherical particle shape. We find that κG and κCCN agree within experimental uncertainties (of around 30%) for particle sizes of 100 and 150 nm; only for 50 nm particles is κCCN larger than κG by a factor of 2. The magnitude of this difference and its dependence on particle size is consistent with the presence of surface active organic compounds. These compounds mainly facilitate the CCN activation of small particles, which form the most concentrated solution droplets at the point of activation. The 50 nm particles, however, are only activated at supersaturations higher than 1% and are therefore of minor importance as CCN in ambient clouds. By comparison with the actual chemical composition of the biomass burning particles, we estimate that the hygroscopicity of the water-soluble organic carbon (WSOC) fraction can be represented by a κWSOC value of approximately 0.2. The effective hygroscopicity of a typical wood burning particle can therefore be represented by a linear mixture of an inorganic component with κ ≅ 0.6, a WSOC component with κ ≅ 0.2, and an insoluble component with κ = 0

    Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power

    Get PDF
    The Global Fire Assimilation System (GFASv1.0) calculates biomass burning emissions by assimilating Fire Radiative Power (FRP) observations from the MODIS instruments onboard the Terra and Aqua satellites. It corrects for gaps in the observations, which are mostly due to cloud cover, and filters spurious FRP observations of volcanoes, gas flares and other industrial activity. The combustion rate is subsequently calculated with land cover-specific conversion factors. Emission factors for 40 gas-phase and aerosol trace species have been compiled from a literature survey. The corresponding daily emissions have been calculated on a global 0.5° × 0.5° grid from 2003 to the present. General consistency with the Global Fire Emission Database version 3.1 (GFED3.1) within its accuracy is achieved while maintaining the advantages of an FRP-based approach: GFASv1.0 makes use of the quantitative information on the combustion rate that is contained in the FRP observations, and it detects fires in real time at high spatial and temporal resolution. GFASv1.0 indicates omission errors in GFED3.1 due to undetected small fires. It also exhibits slightly longer fire seasons in South America and North Africa and a slightly shorter fire season in Southeast Asia. GFASv1.0 has already been used for atmospheric reactive gas simulations in an independent study, which found good agreement with atmospheric observations. We have performed simulations of the atmospheric aerosol distribution with and without the assimilation of MODIS aerosol optical depth (AOD). They indicate that the emissions of particulate matter need to be boosted by a factor of 2–4 to reproduce the global distribution of organic matter and black carbon. This discrepancy is also evident in the comparison of previously published top-down and bottom-up estimates. For the time being, a global enhancement of the particulate matter emissions by 3.4 is recommended. Validation with independent AOD and PM10 observations recorded during the Russian fires in summer 2010 show that the global Monitoring Atmospheric Composition and Change (MACC) aerosol model with GFASv1.0 aerosol emissions captures the smoke plume evolution well when organic matter and black carbon are enhanced by the recommended factor. In conjunction with the assimilation of MODIS AOD, the use of GFASv1.0 with enhanced emission factors quantitatively improves the forecast of the aerosol load near the surface sufficiently to allow air quality warnings with a lead time of up to four days
    • …
    corecore