28 research outputs found

    Gain-of-function Nav1.8 mutations in painful neuropathy

    Get PDF
    Painful peripheral neuropathy often occurs without apparent underlying cause. Gain-of-function variants of sodium channel Nav1.7 have recently been found in ~30% of cases of idiopathic painful small-fiber neuropathy. Here, we describe mutations in Nav1.8, another sodium channel that is specifically expressed in dorsal root ganglion (DRG) neurons and peripheral nerve axons, in patients with painful neuropathy. Seven Nav1.8 mutations were identified in 9 subjects within a series of 104 patients with painful predominantly small-fiber neuropathy. Three mutations met criteria for potential pathogenicity based on predictive algorithms and were assessed by voltage and current clamp. Functional profiling showed that two of these three Na v1.8 mutations enhance the channel's response to depolarization and produce hyperexcitability in DRG neurons. These observations suggest that mutations of Nav1.8 contribute to painful peripheral neuropathy

    Side and time variability of intraepidermal nerve fiber density

    Get PDF
    Objective: To assess the right-to-left and short-term variability of intraepidermal nerve fiber density (IENFD) at the distal site of the leg. Methods: Patients with possible or probable small fiber neuropathy (SFN) and healthy volunteers (HVs) underwent skin biopsies at the right and left distal leg. A subgroup of participants underwent follow-up biopsies 20 days later. Biopsies were immunostained by polyclonal anti-protein gene product 9.5 antibodies, and IENFD was quantified in nonconsecutive sections following published guidelines by operators blinded to the participants' condition (diagnosis, side, and time of biopsy). Findings were referred to sex- and age-adjusted normative values. Results: Forty patients and 17 HVs underwent bilateral skin biopsies; 15 patients and 8 HVs underwent follow-up skin biopsies. Sural nerve and dorsal sural nerve conduction studies were normal in all participants. Interside IENFD did not differ both in patients (median 2.45 IENF/mm +/- 1.45 SD right; 2.2 IENF/mm +/- 1.32 SD left) and HVs (median 6.3 IENF/mm +/- 2.81 right; 6.2 IENF/mm +/- 2.3 SD left). The right-to-left correlation coefficients were excellent (Pearson 0.95 in SFN and 0.97 in HVs). The analysis of IENFD at 20-day follow-up biopsy showed no difference between sides in both groups and yielded excellent correlation coefficients. Conclusions: The diagnosis of SFN can be reliably ascertained by unilateral skin biopsy at the distal site of the leg, and IENFD is not expected to vary within 3 weeks

    New horizons in geriatric medicine education and training: the need for pan-European education and training standards

    Get PDF
    The ageing population ought to be celebrated as evidence for the efficacy of modern medicine, but the challenge that this demographic shift presents for 21st century healthcare systems, with increasing numbers of people living with multi-morbidity and frailty, cannot be ignored. There is therefore a need to ensure that all healthcare professionals grasp the basic principles of care of older people. In this paper, we make a case for the development of pan-European education and training standards for the field of geriatric medicine. Firstly, the challenges which face the implementation and delivery of geriatric medicine in a systematic way across Europe are described – these include, but are not limited to; variance in geriatric medicine practice across Europe, insecurity of the specialty in some countries and significant heterogeneity in geriatric medicine training programs across Europe. The opportunities for geriatric medicine are then presented and we consider how engendering core geriatric medicine competencies amongst nongeriatricians has potential to bridge existing gaps in service provision across Europe. Finally, we consider how work can proceed to teach sufficient numbers of doctors and health professionals in the core knowledge, skills and attitudes required to do this. To safeguard the future of the specialty across Europe, we contend that there is a need to strive towards harmonisation of post-graduate geriatric medicine training across Europe, through the establishment of pan-European education and training standards in the specialty

    Network topology of NaV1.7 mutations in sodium channel-related painful disorders

    Get PDF
    Background: Gain-of-function mutations in SCN9A gene that encodes the voltage-gated sodium channel NaV1.7 have been associated with a wide spectrum of painful syndromes in humans including inherited erythromelalgia, paroxysmal extreme pain disorder and small fibre neuropathy. These mutations change the biophysical properties of NaV1.7 channels leading to hyperexcitability of dorsal root ganglion nociceptors and pain symptoms. There is a need for better understanding of how gain-of-function mutations alter the atomic structure of Nav1.7. Results: We used homology modeling to build an atomic model of NaV1.7 and a network-based theoretical approach, which can predict interatomic interactions and connectivity arrangements, to investigate how pain-related NaV1.7 mutations may alter specific interatomic bonds and cause connectivity rearrangement, compared to benign variants and polymorphisms. For each amino acid substitution, we calculated the topological parameters betweenness centrality (Bct), degree (D), clustering coefficient (CCct), closeness (Cct), and eccentricity (Ect), and calculated their variation (value= mutantvalue-WTvalue). Pathogenic NaV1.7 mutations showed significantly higher variation of |Bct| compared to benign variants and polymorphisms. Using the cut-off value \uc2\ub10.26 calculated by receiver operating curve analysis, we found that Bctcorrectly differentiated pathogenic NaV1.7 mutations from variants not causing biophysical abnormalities (nABN) and homologous SNPs (hSNPs) with 76% sensitivity and 83% specificity. Conclusions: Our in-silico analyses predict that pain-related pathogenic NaV1.7 mutations may affect the network topological properties of the protein and suggest |Bct| value as a potential in-silico marker

    Autonomic dysfunction in preeclampsia: A systematic review

    No full text
    Background: Preeclampsia (PE) is a major obstetric complication that leads to severe maternal and fetal morbidity. Early detection of preeclampsia can reduce the severity of complications and improve clinical outcomes. It is believed that the autonomic nervous system (ANS) is involved in the pathogenesis of PE. We aimed to review the current literature on the prevalence and nature of ANS dysfunction in women with PE and the possible prognostic value of ANS testing in the early detection of PE. Methods: Literature search was performed using Medline (1966-2018), EMBase (1947-2018), Google Scholar (1970-2018), BIOSIS (1926-2018), Web of science (1900-2018); CINAHL (1937-2018); Cochrane Library, Cochrane Database of Systematic Reviews, Cochrane Central Register of Controlled Trials (CENTRAL) and Cochrane Methodology Register (1999-2018). Additionally, the reference lists of articles included were screened. Results: A total of 26 studies were included in the present review presenting data of 1,854 pregnant women. Among these women, 453 were diagnosed with PE, 93.6% (424/453) of which displayed autonomic dysfunction. ANS function was assessed by cardiovascular reflex tests (n = 9), heart rate variability (n = 11), cardiac baroreflex gain (n = 5), muscle sympathetic nerve activity (MSNA) (n = 3), and biomarkers of sympathetic activity (n = 4). Overall, 21 studies (80.8%) reported at least one of the following abnormalities in ANS function in women diagnosed with PE compared to healthy pregnant control women: reduced parasympathetic activity (n = 16/21, 76%), increased sympathetic activity (n = 12/20, 60%), or reduced baroreflex gain (n = 4/5, 80%). Some of these studies indicated that pressor and orthostatic stress test may be useful in early pregnancy to help estimate the risk of developing PE. However, autonomic function tests seem not to be able to differentiate between mild and severe PE. Conclusions: Current evidence suggests that autonomic dysfunction is highly prevalent in pre-eclamptic women. Among autonomic functions, cardiovascular reflexes appear to be predominantly affected, seen as reduced cardiac parasympathetic activity and elevated cardiac sympathetic activity. The diagnostic value of autonomic testing in the prediction and monitoring of autonomic failure in pre-eclamptic women remains to be determined. © 2019 Yousif, Bellos, Penzlin, Hijazi, Illigens, Pinter and Siepmann

    ALS mouse model SOD1<sup>G93A</sup> displays early pathology of sensory small fibers associated to accumulation of a neurotoxic splice variant of peripherin

    No full text
    Growing evidence suggests that amyotrophic lateral sclerosis (ALS) is a multisystem neurodegenerative disease that primarily affects motor neurons and, though less evidently, other neuronal systems. About 75% of sporadic and familial ALS patients show a subclinical degeneration of small-diameter fibers, as measured by loss of intraepidermal nerve fibers (IENFs), but the underlying biological causes are unknown. Small-diameter fibers are derived from small-diameter sensory neurons, located in dorsal root ganglia (DRG), whose biochemical hallmark is the expression of type III intermediate filament peripherin.We tested here the hypothesis that small-diameter DRG neurons of ALS mouse model SOD1G93A suffer fromaxonal stress and investigated the underlying molecular mechanism. We found that SOD1G93A mice display small fiber pathology, as measured by IENF loss, which precedes the onset of the disease. In vitro small-diameter DRG neurons of SOD1G93A mice showaxonal stress features and accumulation of a peripherin splice variant, named peripherin56, which causes axonal stress through disassembling light and medium neurofilament subunits (NFL and NFM, respectively). Our findings first demonstrate that small-diameter DRG neurons of the ALS mouse model SOD1G93A display axonal stress in vitro and in vivo, thus sustaining the hypothesis that the effects of ALS disease spread beyond motor neurons. These results suggest a molecular mechanism for the small fiber pathology found in ALS patients. Finally, our data agree with previous findings, suggesting a key role of peripherin in the ALS pathogenesis, thus highlighting that DRG neurons mirror some dysfunctions found in motor neurons
    corecore