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Abstract

Background: Gain-of-function mutations in SCN9A gene that encodes the voltage-gated sodium channel NaV1.7
have been associated with a wide spectrum of painful syndromes in humans including inherited erythromelalgia,
paroxysmal extreme pain disorder and small fibre neuropathy. These mutations change the biophysical properties
of NaV1.7 channels leading to hyperexcitability of dorsal root ganglion nociceptors and pain symptoms. There is a
need for better understanding of how gain-of-function mutations alter the atomic structure of Nav1.7.

Results: We used homology modeling to build an atomic model of NaV1.7 and a network-based theoretical approach,
which can predict interatomic interactions and connectivity arrangements, to investigate how pain-related NaV1.7
mutations may alter specific interatomic bonds and cause connectivity rearrangement, compared to benign variants
and polymorphisms. For each amino acid substitution, we calculated the topological parameters betweenness
centrality (B, degree (D), clustering coefficient (CC.), closeness (C,), and eccentricity (E.,), and calculated their
variation (Aygue = Mutant ,aueWT ae). Pathogenic NaV1.7 mutations showed significantly higher variation of |AB|
compared to benign variants and polymorphisms. Using the cut-off value +0.26 calculated by receiver operating curve
analysis, we found that AB,, correctly differentiated pathogenic NaV1.7 mutations from variants not causing biophysical
abnormalities (NABN) and homologous SNPs (hSNPs) with 76% sensitivity and 83% specificity.

Conclusions: Our in-silico analyses predict that pain-related pathogenic NaV1.7 mutations may affect the network
topological properties of the protein and suggest |AB.| value as a potential in-silico marker.
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Background

SCN9A gene encodes the alpha-subunit of voltage-gated
sodium channel NaV1.7 that is expressed in dorsal root
ganglion (DRG) nociceptors and in sympathetic neurons.
NaV1.7 is folded into four homologous domains, each
containing six transmembrane helices (S1-S6). S1-S4
helices form the voltage-sensing domain (VSD) and
highly conserved basic residues in S4 sense the electric
field across the membrane. S5-S6 helices with the re-
entrant extracellular loop in between form the pore
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domain (PD) [1]. Membrane depolarisation induces a
conformational change in the VSD that, through the S4-
S5 linker, is transmitted to the PD and prompt the gate
to open, allowing the passage of sodium ions through
the pore [2]. Opening and closing of the channel modu-
late the subthreshold membrane potential of nociceptors
and play a key role in regulating their firing.

Missense mutations in SCN9A have been associated to
a spectrum of painful conditions in humans [3], includ-
ing inherited erythromelalgia (IEM), [4—13], paroxysmal
extreme pain disorder (PEPD) [14-17], and small fibre
neuropathy (SEN) [18, 19]. Voltage-clamp recording,
performed in transfected cell lines and DRG neurons in
vitro, showed that IEM-related mutations enhance the
activation of NaV1.7 through a hyperpolarising shift and
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a slower deactivation that keeps the channel open longer
once it is activated [3], thus generating a larger-than-
normal inward sodium current, with greater biophysical
changes at higher temperature [20]. PEPD-related
NaV1.7 mutations impair channel inactivation and pro-
long action potentials and repetitive nociceptor firing in
response to provoking stimuli, such as stretching and ex-
posure to cold temperatures [14, 16, 21]. NaV1.7 muta-
tions identified in SFEN patients display a spectrum of
electrophysiological signatures, including impaired slow
inactivation, depolarised slow and fast inactivation and
enhanced resurgent currents [18].

Overall, all the disease-related NaV1.7 mutations are
pro-excitatory for the NaV1.7 channel, thus increasing
nociceptor excitability. For those NaV1.7 mutations that
have been studied by structural modelling, the gain-of-
function effect stems from functionally significant changes
in the biomolecular structure of NaV1.7 channel [22-24].
Accordingly, gain-of-function mutations found in IEM,
PEPD, and SEN patients might be expected to produce
functionally significant changes in the protein structure of
NaV1.7, whereas single nucleotide polymorphisms (SNPs)
or variants not associated with disease would not be ex-
pected to modify the NaV1.7 protein structure in func-
tionally significant ways. Previous NaV1.7 structural
modelling, combined with functional studies, showed that
the disruption of the hydrophobic ring by the F1449V [24]
or the in-frame deletion Leu955Del [22] contribute to de-
stabilizing the NaV1.7 closed-state. These studies suggest
that homology modelling is a useful tool to predict func-
tional changes in the biomolecular structure of Navl.7.
However, the nature and extent of interatomic bond varia-
tions in NaV1.7 protein structure caused by amino acid
changes have not been examined over a spectrum of mu-
tations and SNPs.

Structural modelling combined with network theory
has been widely exploited in studying protein struc-
ture to identify the emergent features of global con-
nectivity. Indeed, several studies have used network
theory to provide important insights in the local top-
ology of interactions from a global prospective with
examples from the field of allosteric communication
pathways [25], protein-protein interactions [26], cata-
lytic site residues in enzymes [27] and protein-folding
mechanisms [28]. Several methods have been pro-
posed in the literature to transform the protein struc-
tures into a network by considering: (a) the C-alpha/
C-beta atoms in the amino acid residues, as in a pro-
tein backbone network [29] (b) description of the
atomic contacts between residues that also feature
correlated motions [30-32] or (c) weak and strong
non-covalent protein structure network considering
atom-atom interaction at the side chain level which
has been proven to provide valuable biological
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insights [30, 33, 34]. These studies have shown that
network analysis of a protein can yield a useful
method to characterize the topology of the constitu-
ent amino acid residues. Protein topologies and inter-
action connectivity could often produce distinct
small-world networks proprieties [28, 35, 36], thus having
high local connectivity of residue nodes with a smaller
number of long-range residue-residue interactions.

In the present study, we aimed at elucidating spe-
cific interatomic bond variations caused by amino
acid changes in NaV1.7 structure by using a network-
based method. We tested the hypothesis that muta-
tions associated with IEM, PEPD and SFN cause
specific types of interatomic bonds variation of
NaV1.7 that can be quantified by a network-based
theoretical approach able to reduce the complexity of
the three-dimensional protein architecture to one-
dimensional graphs [28].

Methods

Protocol description

The overall method is summarized in Fig. 1. Our method-
ology can be encapsulated in a protocol that has two main
components: homology modelling and topology analysis.
The main steps of the current protocol are: (A) Homology
modelling of NaV1.7 WT based on the bacterial NavAb
sodium channel template. (B) Energy minimization and
structure refinement of the protein structure (C) In-silico
mutagenesis is performed for pathogenetic and control
group (nABN/hSNPs) mutations (Table 1). (D) Construc-
tion of inter-residue network based on weak and strong
noncovalent interactions (E) Network centrality calcula-
tion and (F) the difference between mutated and WT mu-
tated (Avalue = mutant value'WT vulue)~

NaV1.7 homology modelling

A homology model of the closed-state pore domain of
the NaV1.7 was generated using the crystal structure of
the bacterial Arcobacter bultzeri NaV channel NaVAb
[37] as a template with the human sequence
NM_002977.3 through the MEMOIR server [38]. Gap
region (269-340, D;) between template-target alignment
and interdomain loop regions (416-726, D;-Dy; 967-
1175, Dy-Dypp; 1458-1498, Dyp-Dry) were excluded from
in-silico mutagenesis (Fig. 1A). The NaVAb template
shared 28% sequence identity for Dj, 24% for Dy, 28%
for Dy and 28% for Dy (overall 27% sequence identity).
The four homologous domains were modelled in the
clockwise direction viewed from the extracellular side as
previously suggested [39, 40]. Ab-initio modelling was
performed to extend the S6 helices of the PD using the
Iterative Threading ASSEmbly Refinement (I-TASSER)
server [41]. The final model was subjected to energy
minimization and model refinement using the YAMBER
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Fig. 1 NaV1.7 computational protocol overview. A NaV1.7 WT homology modelling of based on the bacterial NavAb sodium channel template. B
Energy minimization and structure refinement of the protein structure with YAMBER force field and FG-MD server. C In-silico mutagenesis for
pathogenetic and control group (NABN/hSNPs) mutations. D Transforming NaV1.7 structure into residue interaction graphs. The construction of
inter-residue network was based on interatomic bonds (hydrophobic, hydrogen bonds, salt-bridges, cation-rm and r-1 stacking interactions) using
the commands “ListintAtom” and “ListintBo” via YASARA software. The de novo network construction for each mutant and WT models is achieved
considering the predicted binary interatomic bonds. £-F. Network centrality calculation and their relative variation between mutant and WT

force field [42] and the Fragment-Guided Molecular Dy-
namics (FG-MD) server [43]. The NaV1.7 WT model
was subjected to stereochemical analysis with RAM-
PAGE server (http://services.mbi.ucla.edu/). RAMPAGE
provides results in a graphical form that shows the num-
ber of residues falling in favoured region, allowed region
and in outlier region.

In-Silico Mutagenesis of NaV1.7 pathogenetic and control
mutations

We performed in-silico mutagenesis via WT domain re-
placement of NaV1.7 mutations found in IEM, PEPD or
SEN patients in which gain-of-function was demon-
strated by cell electrophysiology assay and that do not
alter the biophysical properties of the channel (nABN).
To increase the number of control variants, we added
missense SNPs identified between SCN9a homologous
genes sharing >90% nucleotide sequence identity using
the NCBI HomoloGene Database [44]. We constructed
the phylogenetic tree of the multiple sequence alignment
using ClustalW via neighbor joining method (Additional
file 1: S1 Text; https://www.ebi.ac.uk/Tools/phylogeny/
clustalw2_phylogeny/). The mutated models were fur-
ther subjected to energy minimization and model re-
finement using the YAMBER force field [42] and the
FG-MD server (Fig. 1B) [43]. Such hSNPs have previ-
ously been used in similar studies [45-47]. All the
mutations and SNPs are reported in Additional file 2:
Table S1.

Transforming NaV'1.7 structure into residue interaction graphs
NaV1.7 structures were transformed into mathemat-
ical graphs by identifying interatomic bonds between
the amino acids. The amino acid residues form the
nodes and inter-node contact interaction form the
edges of the graph (Fig. 1D). We identified the

interatomic bonds (hydrophobic, hydrogen bonds,
salt-bridges, cation-m and m-m stacking interactions)
between two residues i and j as long as the atom-
atom distance between them was less than 5.0 A
using the commands “ListIntAtom” and “ListIntBo”
via YASARA software (Yet Another Scientific Artifi-
cial Reality Application, www.yasara.org). Hydrophobic
contacts between residues were considered in the fol-
lowing atom groups: (a) the first carbon of CHj;-,
-CH,- and CHC; (b) sp2 carbons (phenolic rings). -
1t stacking were considered between (a) sp> carbons
with a hydrogen and (b) carbon, nitrogen, oxygen or
sulphur atoms in planar phenolic rings. Cation-mnt for-
mation was considered to be a m-m contact with the
difference being that one of the interaction partners
is a cation. The de mnovo network construction for
each mutant and WT models is achieved considering
the predicted binary interatomic bonds identified
through YASARA software.

Topological metrics and network visualization

We computed some of the most well-known network
centrality measures for each mutant and WT network
NaV1.7 graph using the Cytoscape plugin NetworkAna-
lyzer [48], namely:

Betweenness Centrality (B.,) and edge Betweenness
centrality (EB.): B [49] is defined as the fraction of
shortest pathways between all pairs of nodes of the net-
work that go through that node. Let G = (N, E) a graph,
where N is the set of the nodes and E is the set of the
edges. For each node n and m in N, let d (n, m) the dis-
tance between n and m. We define

oy (n)
o W

where s, t €N, oy (n) is the number of shortest paths

Betweenness centrality (n) = Z

s #n =t
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Table 1 AB,, values of NaV1.7 mutations associated to IEM, SFN and PEPD

Disease Mutation Amino acid Channel AB; Reference
Properties Part

IEM 1136V =HpO VSD (S1;,D) 0.12 [12, 58, 69]
S211P Polar — HeO VSD (S4,D) -1.09 [70]
F216S HpO — polar VSD (54,D) -1.71 [11,57]
L823R HpO — charged VSD (S4,Dy) 123 [7, 71
W1538R HpO — charged VSD (S2-S3;Dy) 0.18 [72]
1234T HeO — polar 54-S5 (D) 233 73]
S241T =Polar S4-S5 (D) 0.34 [23, 74, 75]
1848T HpO — polar S4-S5 (Dy) -5.83 [4,9,17,47,59]
L858H HpO — charged S4-S5 (Dy) -1.85 [4,9, 17]
L858F =H,O S4-S5 (Dy) -1.74 [5, 11, 76]
G856D° HeO — charged S4-S5 (Dy) -0.55 [19]
A863P =H,0 54-S5 (D) 032 6]
P1308L =H,O S4-S5 Dy) 0.04 [21]
V1316A =HgO S4-S5 (Dly) 0.36 [47, 771
A1632E° HeO — charged 54-55 (Dy) 027 (78]
N395K polar — charged Pore (S6,D) 532 [11,79]
V400M =HgO Pore (S6,D) -0.68 [23, 80]
V872G =HgO Pore (S5,D) -248 [81]
F1449v =HoO Pore (S6;,Dy) -0.51 [10, 23]
A1746G =HgO Pore (S6,Dy) 1.40 [72]

SFN R185H =charged VSD (52-S3,D) 0 [18]
1228M =HeO VSD (S4,D) 204 [18, 82]
1739V =HgO VSD (S1;0y) 0.54 [18, 83]
M1532l =HgO VSD (52-S3,Dy) 0.15 [18]
M932L =HgO Loop Pore (Dy) 046 [18]

PEPD V1298D HpO — charged S4-S5 (Dy) -0.81 [14]
V1298F =HgO S4-S5 (Dy) -0.004 [14, 15, 21]
V1299F =HpO S4-S5 (D) 0.07 [14, 15, 17]
G1607R HpO — charged S4-S5 Dy) 0.62 [84]
M1627K HgO — charged 54-55 (Dy) 122 [14, 16, 17, 85]

IEM Inherited erythromelalgia, SFN Small Fibre Neuropathy, PEPD Paroxysmal extreme pain disorder, nABN no biophysical abnormalities, H,O Hydrophobic. AB.,

was calculated as (mutated B, — Wild-type B.;) x 100
*This mutation associates with clinical features of IEM and SFN
PThis mutation causes symptoms common both to IEM and PEPD

from s to t that n lies on, and o, denotes the num-
ber of shortest paths from s to t. It accounts the im-
portance of a node facilitating interactions between
other nodes. For example, a node with high Bct can
operate as a bridge on many shortest paths between
other nodes in the network. It is a measure of how
powerful a node is able to transfer (high B.) or inter-
rupt (low B,,) the spread of information on the fastest
connection between two nodes. Similarly, the EB,, of
an edge is the number of shortest paths between
pairs of nodes that run along it. We define:

Onn (€)

= Zni e NZ n; € N\{n;} G;.n ’
H
(2)

E = set of edges; Onyp, = NUM-

Edge Betweenness (e)

Where N = set of nodes;
ber of shortest paths between n; and nj; oy, (e) =num-

ber of shortest paths between n; and n; which pass
through e € E;

Degree (D): D [49] of a node (k) is defined as the total
number of nodes that it is directly connected to;



Kapetis et al. BMC Systems Biology (2017) 11:28

Clustering Coefficient (CC,): Clustering Coefficient
[49] is a metric commonly employed to identify well-
connected sub-components in network which repre-
sents the interconnectivity of neighbors of the node.
It measures the degree to which nodes tend to cluster
together and is defined as the fraction of triangles
around a node among the total number of possible
triangles. We define

. - 2en
Clustering Coefficient (n) = o (o 1) (3)
where k, is the number of neighbors of n and e, is the
number of connected pairs between all neighbors of n;

Closeness centrality (C.,): Cct is defined as the sum
of the inverted distances, i.e. farness, to all other
nodes in the graph. It captures the basic intuition
that the closer a node is to all other nodes in terms
of path length, the more important it is. Mathematic-
ally, C., of a node n is defined as the inverse of the
sum of shortest paths from n to all other nodes m in
network. We define

Closeness (n) = average (ld (o, ) (4)

Eccentricity (E.;): Ect measures the distance between a
node n and the most distance node my; if the E_ of the
node n is low, this means that all other nodes are in
proximity whereas a high E., means that there is at least
one node (and all its neighbors) that is far from node n.
We define E., maximum non-infinite length of a shortest
path between n and another node in the network. We
define

Eccentricity (n) = max{d(n, m) : m € N} (5)

Network centrality measure variation

For each network centrality measures we calculated the
difference between mutant and WT values defined as
Avalue (Avalue = mutant value — WT value). The NaV1.7
amino acid network was visualized using Cytoscape’s Or-
ganic layout, which is a force-directed layout algorithm
similar to the Fruchterman-Reingold approach [50].

Statistical analysis

Statistical analyses were performed using the R statistical
Package [51]. Data are indicated as mean + SD. Statistical
significance was determined by the Wilcoxon signed-
ranked test (p <0.05). The receiver operating characteris-
tics (ROC) curve was used to assess the discriminatory
power of centrality measure variations between patho-
genetic NaV1.7 mutations and control groups (nABN
and hSNPs). The upper-angle of ROC corresponding to
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the best sensitivity and specificity was used to identify
the best cut-off value.

Results

NaV1.7 interatomic structure graph design

We performed homology modelling to construct the ter-
tiary structure of the closed-state NaV1.7 sodium chan-
nel (Fig. 1). We constructed the atomic model of NaV1.7
sodium channel using the MEMOIR server [38] based
on the crystal structure of the bacterial Arcobacter bult-
zeri NaV channel NaVAD as a template with the human
sequence NM_002977.3. The first four helices S1-S4
form the VSD and the last two helices S5-S6 form the
PD (Fig. 2a and b). Gap region (269-340, S5-6 extracellu-
lar linker in D) between template-target alignment and
interdomain loop regions (416-726, D;-Dy; 967-1175,
Dy-Di; 1458-1498, Dyp-Diy) were excluded from in-
silico mutagenesis. The four homologous domains were
modelled in the clockwise direction viewed from the
extracellular side as suggested previously [39, 40]. Ab-
initio modelling was performed to extend the S6 helices
of the PD using the Iterative Threading ASSEmbly Re-
finement (I-TASSER) server [41]. The final model was
subjected to energy minimization and model refinement
using the YAMBER force field [42] and the Fragment-
Guided Molecular Dynamics (FG-MD) server [43]
(Additional file 3: NaV1.7 pdb file). The RAMPAGE re-
sults for the NaV1.7 model showed 88.5% residues in
most favored region (Additional file 4: Figure S1), 9% (90
residues) in allowed region and 2.5% (25 residues) in out-
lier region. A good quality Ramachandran plot has over
90% residues in the most favoured regions [52] therefore
Ramachandran plot of NaV.17 it is close to a good quality
model (88.5% residues in most favoured regions).

We performed in-silico mutagenesis for 18 mutations
causing IEM, 6 mutations causing SFN, 6 mutations
causing PEPD (Additional file 2: Table S1), 4 mutations
not causing biophysical abnormalities (nABN) in the
channel (N1245S: [53]; L1267V: [53]; V14281 and
T920N: Waxman, Dib-Hajj and Mantegazza, unpub-
lished observations) and 49 SNPs identified among hu-
man and homologous mammalian (hSNPs) SCN9A
genes with >90% sequence identity (Additional file 5: S2
Text). All the disease-related mutations had previously
been characterized by electrophysiological assays, and
found to confer gain-of-function changes to the NaV1.7
channel (Additional file 2: Table S1). The WT and mu-
tant NaV1.7 structures were transformed into undirected
graphs by the identification of hydrophobic, cation-n
and m-m stacking interactions and hydrogen bonds (H-
bonds) among the amino acids. In the resulting graph,
amino acids are the nodes and their interactions are the
edges (Fig. 2¢).
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NaV1.7 is folded into four repeated domains (D-Dy); helices S1-54 comprise the voltage-sensing domain (VSD); helices S5-S6 and their intracellular
linker comprise the pore domain (PD). b Intramembrane view of the folded model of NaV1.7. ¢ The graph shows the topology of the mutations found
in patients with inherited erythromelalgia (IEM; red), paroxysmal extreme pain disorder (PEPD; green), small-fibre neuropathy (SFN; purple) and the
amino acid substitution with no biophysical abnormalities (NABN) and homologous SNPs (light blue). Nodes represent the residues and edges of the
interatomic bonds. Red and black edges represent high (red) or low (grey) edge betweenness centrality (EB,) values, respectively. Edge thickness are
proportional to EB., and reveal that a high number of shortest paths pass through few edges. *This mutation associates with clinical features of IEM
and SFN. #This mutation causes in vitro biophysics changes and in vivo symptoms common both to IEM and PEPD. The NaV1.7 amino acid network

were visualized using Cytoscape’s Organic layout, which is a force-directed layout algorithm similar to the Fruchterman-Reingold approach

Analyses of the interatomic variations caused by gain-of-
function mutations

Previous studies showed that gain-of-function mutations
change the biophysical properties of the channel NaV1.7
[4-9, 14-16, 18, 54] but the underlying interatomic vari-
ations are yet to be investigated. We analyzed the inter-
atomic variations by calculating the network centrality
parameters (B., D, CC., C., E.; see methods for de-
tailed definitions) of WT and mutated residues and the
value of the variation (A, = mutant ;5. - WT L0
AB., AD, ACC,, AC,, AE,) associated with each gain-
of-function NaV1.7 mutation, nABN and hSNP. B, is a
measure of the centrality of a node #n defined as the frac-
tion of shortest pathways between all pairs of nodes (s, t)
of the network that go through that node n [49, 55]. D
of a node 7 is defined as the total number of nodes that
it is directly connected to [49, 55]. CC,, is a metric com-
monly employed to identify well-connected sub-
components in network which represents the intercon-
nectivity of neighbors of a node # [35, 49]. C,, is defined
as the sum of the inverted distances of a node #, ie.

farness, to all other nodes in the graph. It captures the
basic intuition that the closer a node is to all other
nodes, the more important it is [56]. Eccentricity (E.,) of
a node 7 is the greatest distance from a node # to any
other node m [55].

Figure 3a-e show the profile of the topological parame-
ters B, D, CC., C., and E. in WT and mutated resi-
dues. The graphs show that both gain-of-function
mutations and nABN/hSNPs modify the D values (Fig. 3¢
and Additional file 6: Figure S2) and CC,, values (Fig. 3d
and Additional file 7: Figure S3) in a wide range but
without significant differences between the groups (gain-
of-function mean AD=4.30+5.15; nABN and hSNP
mean AD=2.27+2.1; p>0.05 by Wilcoxon signed-
ranked test; gain-of-function mean ACC,. =0.15 + 0.20;
nABN and hSNP mean ACC. =0.20 +0.25; p>0.05 by
Wilcoxon signed-ranked test). Smaller variations were
observed in C. values (Fig. 3e and Additional file 8:
Figure S4) and E. values (Fig. 3f and Additional file 9:
Figure S5) without significant differences between the
groups (gain-of-function mean AC, = 0.65 + 0.94; nABN
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Fig. 3 (See legend on next page.)
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Fig. 3 Topological parameter profiles of NaV1.7 gain-of-function mutations and nABN and hSNPs. a The upper panel shows the B, profile of gain-of-
function mutation; the lower panel show the B, profile of NABN and hSNPs. Squares indicates B, values of WT amino acids, circles indicate B, values
of mutated amino acids. The graphs highlight that the difference between B, value of mutated amino acids and B, value of WT amino acids is higher
in the cohort of gain-of-function (GF) mutations (upper panel) compared to control (Ctrl) NnABN and hSNPs (lower panel). B., values are multipled by
100. b The box plot shows the |AB,| difference between gain-of-function mutations and the cohort of NnABN and hSNP variants (mean gain-of-
function |AB| = 1.14 £ 1.40; nABN and hSNP AB,, = 0.19 £ 0.28; **p < 0.001 by Wilcoxon signed-ranked test). |AB,,| values are multipled by 100; dark
horizontal lines and the triangular symbol represent median and mean values respectively, with the box representing the 25th and 75th percentiles,
the whiskers the 5th and 95th percentiles, and the dots the outliers. ¢ The upper panel shows the Degree (D) profile of gain-of-function mutations; the
lower panel show the D profile of NnABN and hSNPs. Squares indicates D values of WT amino acids, circles indicate D values of mutated amino acids.
The box plot shows the |AD] difference between gain-of-function (GF) mutations and the cohort of NABN and hSNP (Ctrl) variants (gain-of-function
mean |AD] =43 +5.15; nABN and hSNP |AD| = 2.37 £ 2.10; p > 0.05 by Wilcoxon signed-ranked test); dark horizontal lines and the triangular symbol
represent median and mean values respectively, with the box representing the 25th and 75th percentiles, the whiskers the 5th and 95th percentiles,
and the dots the outliers. d The upper panel shows the Clustering Coefficient (CC) profile of gain-of-function mutations; the lower panel show the CC
profile of NABN and hSNPs. Squares indicates CC values of WT amino acids; circles indicate CC values of mutated amino acids. The box plot shows the
|ACC,| difference between gain-of-function (GF) mutations and the cohort of NABN and hSNP (Ctrl) variants (mean gain-of-function |[ACC,| =0.15+
0.20; nABN and hSNP |ACC,,| =0.20+ 0.25; p > 0.05 by Wilcoxon signed-ranked test); dark horizontal lines and the triangular symbol represent median
and mean values respectively, with the box representing the 25th and 75th percentiles, the whiskers the 5th and 95th percentiles, and the dots the
outliers. e The upper panel shows the Closeness (C.,) profile of gain-of-function mutations; the lower panel show the C, profile of NABN and hSNPs.
Squares indicates C, values of WT amino acids, circles indicate C, values of mutated amino acids. The box plot shows the AC,, difference between
gain-of-function (GF) mutations and the cohort of nABN and hSNP (Ctrl) variants (mean gain-of-function |AC.| = 0.6+ 0.9; nABN and hSNP |AC.| = 0.7
+14; p> 005 by Wilcoxon signed-ranked test). C., and AC,, values are multipled by 100; dark horizontal lines and the triangular symbol represent
median and mean values respectively, with the box representing the 25th and 75th percentiles, the whiskers the 5th and 95th percentiles, and the dots
the outliers. f The upper panel shows the Eccentricity (E.,) profile of gain-of-function mutations; the lower panel show the E. profile of nABN and hSNPs.
Squares indicates E., values of WT amino acids, circles indicate E, values of mutated amino acids. The box plot shows the |AE| difference

between gain-of-function (GF) mutations and the cohort of nNABN and hSNP (Ctrl) variants (mean gain-of-function |AE.| = 1.53 + 3.75; nABN and hSNP

|AE.| =2.05 +4.62; p> 005 by Wilcoxon signed-ranked test); dark horizontal lines and the triangular symbol represent median and mean values
respectively, with the box representing the 25th and 75th percentiles, the whiskers the 5th and 95th percentiles, and the dots the outliers

and hSNP mean AC_ =0.71 £ 1.51; p > 0.05 by Wilcoxon
signed-ranked test; gain-of-function mean AE,=1.53 t
3.75; nABN and hSNP mean AE_ =2.05 + 4.62; p > 0.05
by Wilcoxon signed-ranked test). Overall, AD, ACC,,
AC,, AE. did not differ significantly between gain-of-
function mutations and nABN and hSNPs.

We next analysed B, values and found that pathogenic
NaV1.7 mutations are characterized by higher variations
of AB. compared with non-pathogenic mutations and
polymorphisms (Fig. 3a; Table 1 and 2). Indeed, |AB|
was significantly higher in gain-of-function mutations
compared with nABN and hSNPs (gain-of-function
mean AB, =1.14 + 1.40; nABN and hSNP mean AB, =
0.19+0.28; p<0.001 by Wilcoxon signed-ranked test;
Fig. 3b). AB,, variations associated with Nav1.7 patho-
genetic mutations and nABN variants are exemplified in
the structural modeling shown in the Fig. 4.

Figure 4a and b shows the B, topological proprieties
of the F216S mutation associated to IEM [11, 57]. In the
WT protein, F216 is located in VSD (S4) of Dy and is
predicted to mediates hydrophobic interactions with
V194, V195, F198, T202 (S3, Dy) and L219 (S4, Dy). F216
is also predicted to mediate two H-bonds: F216[NH]
with L213[CO] and F216[CO] with L219[NH] residues
(S4, Dy). Upon mutation, the hydrophobic interaction
between F216S (S4) and the S3 residues (D VSD) are
interrupted. The H-bonds F216[NH] with L213[CO] are
interrupted. New H-bonds between S216[NH] and
A212[CO] are created. All these changes yield negative

B, variation (AB. =-1.71, Fig. 4a and b; Additional file
10: S1 YASARA; Additional file 11: S2 YASARA).
L858H is another IEM-associated mutation [4, 9, 17]. In
the WT protein, L858 is located in S4-S5 and is
predicted to interacts with 1234 (Dy; S4-S5), V861 (Dyy;
S4-S5), N950, L951 and V947 (Dy; S6) through hydro-
phobic bonds and through H-bonds formed by
L858[CO] and L862[NH]) (Dy; S4-S5). L858H mutation
interrupts hydrophobic interaction with 1234 (Dy; S4-S5),
V861 (Dy; S4-S5), N950 (Dy; S6) and forms new H-
bonds by H858[NH] and A854[CO] (Dyy; S4-S5) and by
H858[CO] with V947[NH] (Dy; S6) leading to a negative
AB,, value (-1.85) (Fig. 4c and d; Additional file 12: S3
YASARA; Additional file 13: S4 YASARA). L1267V is an
example of nABN variant that is located in the VSD of
Dy which is highly conserved between human and
SCN9A homologous genes (Additional file 5: S2 Text).
L1267 interacts with V1263 through H-bonds formed by
L1267[NH] and V1263[CO]. Upon mutation, V1267
forms new hydrophobic bond with V1263 which does
not cause B, variation (AB. =0) (Fig. 4e and f; Add-
itional file 14:S5 YASARA; Additional file 15:56
YASARA).

Figure 5 shows the network inter-residue connectiv-
ity of the IEM-associated mutations I848T and
N395K, both characterized by very high AB,, values.
1848 is located in S4-S5 (Dy) and I848T causes a sig-
nificant hyperpolarising shift in activation, a slow de-
activation and an increased response to small-ramp
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Table 2 AB,, values of NaV1.7 nABN and hSNPs

Type Mutation Amino acid Channel AB
properties Part

hSNP S126A Polar — HeO VSD (S1,D) 0
L127A =HeO VSD (S1;,0) 0.12
M145L =HeO VSD (S1;,D) 0
N146S =Polar VSD (S1,D) 0.020
V194l =HeO VSD (S3,D) -0.14
L2017V =HgO VSD (S2,D) 0.259
N206D Polar — Charged VSD (S2,D) -0.037
E759D =Charged VSD (S1-S2,Dy) -0.18
A766T HoO — polar VSD (S2,D) 020
A766V =HeO VSD (S2,Dy) 0.06
1767V =HeO VSD (S2,0) 0.13
V795 =Hy0 VSD (S3,D) 0.72
A815S HpO — polar VSD (53-54,Dy) 024
K1176R =Charged VSD (S1,Dy) 0.0004
R1207K =Charged VSD (S1-52Dy)  -0.19
T1210N =Polar VSD (S1-S2,Dy) 0
11235V =HeO VSD (S2;,Dw) 0
A1505V =HgO VSD (S1,Dy) 0.00026
S1509T =Polar VSD (S1;Dn) 0.092
S1509A Polar — HeO VSD (S1;Dn) 0.0084
Q1530P Polar — HeO VSD (51-S2,Dy) -0.166
Q1530K Polar — Charged VSD (S1-S2,Dy) 0.20
Q1530D =Polar VSD (51-S2,Dy) 0.066
H1531Y Charged — Polar VSD (51-S2;Dy) 012
M1532v =H,O VSD (51-S2,Dy) 0.66
E1534D =Charged VSD (S1-S2,Dy) 0.067
Y1537N =Polar VSD (S1-S2Dp) 063
T1548S =Polar VSD (S2;Dy) 0.085
H1560Y Charged — Polar VSD (S2-S3,Dy) -0.20
H1560C =Hy0 VSD (S2-S3:Dy) 017
V1565I =HO VSD (S2-S3,Dy) -045
15771 =Hy0 VSD (S3.D) 007
D1586E =Charged VSD (S3,Dw) 0.07
T1590K Polar — Charged VSD (53-S4;Dy) 0.07
T1590R Polar — Charged VSD (S3-54;Dy) 0.29
V1613I =HgO VSD (S4,Dy) -0.67

nABN N12455° =polar VSD (52-S3.Dy) -0.05
L1267V° =HeO VSD (S3;,Dw) 0
V1428| =HgO Pore (S6;Dy) 0.19
T920N =Polar Loop-P (D)) 0.04

hSNP D890E =Charged Loop-P (D)) -0.13
D890V Charged — HpO Loop-P (Dy) -0.13
T1398M Polar — HgO Loop-P (Dy) -0.14
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Table 2 AB,, values of NaV1.7 nABN and hSNPs (Continued)

11399D HgpO — Charged Loop-P (Dyy) -1.63
D1411S Charged — Polar Loop-P (Dyy) -0.20
D1411N Charged — Polar Loop-P (Dyy) -0.16
K1412 Charged — HpO Loop-P (Dy) -0.0033
K1412E =Charged Loop-P (Dyy) -0.067
K1415I Charged — HgO Loop-P (Dy) 0.038
S1419N =Polar Loop-P (Dyy) 0.001
D1662A Charged — HpO Loop-P (D) -043
G1674A =Hg0 Loop-P (Dy) -0.71
K1700A Charged — HpO Loop-P (Dy) -0.22

hSNPs homologous Single nucleotide Polymorphisms AB,, was calculated as
(mutated B, — Wild-type B.,) x 100
“Brouwer et al. [53]; HpO: Hydrophobic

depolarisations in DRG nociceptors [4, 9, 17, 58, 59].
1848 is predicted to interact with S4-S5 (Dy;) and pore
(Dqr, S6) through 1845 and F1435, which have with
very high B, values (3.4 and 6.6, respectively). Upon
mutation, the interatomic bond interactions between
Dy (S4-S5) and Dy (pore; S6) are interrupted and
therefore AB. shifts to a negative value (-5.83)
showing lower EB. values (Fig. 5a and b, Additional
file 16: Figure S6). Conversely, N395K mutation forms
interdomain hydrophobic (S4-S5; D; and Dy Pore;
Dyy) and H-bonds (S4-S5; Dy and S6; Dpy), leading
to a positive AB,, (5) and higher EB,, values.

AB distinguishes with high specificity pathogenic

NaV1.7 mutations from variants not causing disease

The in-silico topological analyses described in Figures 4
and 5 was computed for all the pain disorder-related
mutations (18 causing IEM, 6 causing SFN and 6 caus-
ing PEPD), and for all the 4 nABN and 49 hSNPs vari-
ants showed in Fig. 2c. The results showed that the only
topological parameter that differs significantly between
gain-of-function mutations and non-pathogenic amino
acid changes is the |AB,| value (Fig. 3). Indeed, 83% of
nABN variants and hSNPs were characterized by |AB|
values <0.26. The remaining 17% showed |AB.| values
>0.26 (42, V7951; 57, M1532V; 59, Y1537N; 63, V1565I;
68, V1613L; 73, 11399D; 67, T1590R; 81, D1662A; 82,
G1674A) (Fig. 6a and Table 2). According to our NaV1.7
model structure, most of nABN and hSNPs, which are
evolutionary variable, are located in VSD and P-loop do-
mains and are predicted to be exposed to the lipid inter-
face (Fig. 6b).

Twenty-three out of 30 (77%) gain-of-function NaVv1.7
mutations had |AB,| > 0.26 and are located in VSD, Pore
and S4-S5 of Dy, Dy, Dy and Dy domains (Table 1).
The remaining 7 mutations (23%) had |AB.| <0.26 (I,
1136V; 2, R185H; 8, M15321; 9, W1538R; 17, V1298F;
19, V1299F; 20, P1308L) (Fig. 6a and Table 1). These
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Fig. 4 Structural modelling of NaV1.7 variants and their interatomic bonds. a The graph shows the NaV1.7 sodium channel topology and highlights the
IEM associated mutation F216S and its intra-domain bond interaction (S3 and S4; depicted in red). b Upper left inset shows the intramembrane view of
the NaV1.7 channel and the amino acid F216. Upper right inset shows network view of the four NaV1.7 channel domains (D, purple; Dy, green; Dy, light
blue; Dy, orange); the topology of amino acid F216 is showed as grey node. Lower insets show the bonds of WT amino acid F216 (feft) and mutated
amino acid 5216 (right). Hydrophobic bonds are showed in green solid lines. H-bonds are showed with yellow dashed lines. F216 (D, red) interacts with
V194, V195, F198, T202 (S3, D) and L219 (S4, D) via hydrophobic bonds. F216 interact via H-bonds with 1213 (formed by F216[NH] and L213[CO]) and
1219 (F216[CQO] with L219[NH]) located in S4, D, The mutation F216S (right) interrupts all the hydrophobic interactions with S3 residues and created new
H-bonds (S216[NH] with A212[CQO]) causing a decrease of B, and EB,; values. ¢ The graph shows the NaV1.7 sodium channel topology and highlights
the IEM associated mutation L858H and its inter-domain bond interaction (S4-S5 and S4; depicted in red). d Upper left inset shows the intramembrane
view of the NaV1.7 channel and the amino acid L858. Upper right insets show network view of the four NaV1.7 channeldomains (D, purple; Dy, green; Dy,
light blue; Dy, orange); the topology of amino acid L858 is showed as grey node. Lower inset shows the bonds of WT amino acid L858 (left) and mutated
amino acid H858 (right). Hydrophobic bonds are showed in green solid lines. H-bonds are indicated by yellow dashed lines. L858 residue (red, $4-S5; Dy)
interacts with 1234 (D;; 54-S5), V861 (Dy; S4-55), N950, L951 and V947 (Dy; S6) through hydrophobic bonds and through H-bonds with L862 (formed by
1.858[CQ] and L862[NH]) located in Dy; $4-S5. L858H mutation interrupts hydrophobic interaction with 1234 (D;; $4-55), V861 (Dy; $4-S5), N950 and forms
new H-bonds with A854 (formed by H858[NH] and A854[CO)) (Dy; S4-S5) and V947 (formed by H858[NE2] and VV947[CO)) (Dy; S6). These changes decrease
B, value of amino acid 858 from 2.2 to 0.39. e The graph shows the NaV1.7 sodium channel topology and highlights the nABN mutation L1267V that is
located in the domain Dy; S3 depicted in red. f Upper left inset show the intramembrane view of the NaV1.7 channel and the amino acid L1267. Upper
right inset shows network view of the four NaV1.7 channel domains (D, purple; Dy, green; Dy, light blue; Dy, orange); the topology of amino acid L1267 is
showed as grey node. Lower inset show the bonds of WT amino acid L1267 (left) and mutated amino acid V1267 (right). Hydrophobic bonds are showed

in green solid lines. H-bonds are indicated by yellow dashed lines. L1267[NH] (VSD in D) interacts through H-bonds with V1263[CQO]. V1267mutation
interacts with V1263 through a hydrophobic bond. This change does not modify B, value of the residue 1267

pathogenetic mutations with small |AB,| variation are
located in VSD of D; (2, R185H) and Dy (8, M1532I; 9
W1538R) or in S4-S5 linker of Dy; (17, V1298F; 19,
V1299F; 20, P1308L), are highly evolutionary conserved
residues (Additional file 5: S2 Text) and are predicted to
be exposed outside the core of the channel (exception:
1136V; Fig. 6b-c).

According to these results, we hypothesized that AB,
might provide enough sensitivity and specificity to dis-
tinguish gain-of-function mutations from control vari-
ants. Using the cut-off value (AB.,+0.26) that
maximizes sensitivity and specificity, AB., correctly clas-
sified 44 out of 53 controls variants (nABN and hSNPs)
and 23 out of 30 gain-of-function mutations, yielding
76% sensitivity and 83% specificity. The area under the
ROC curve analysis for the AB,, scores was 0.81 (Fig. 6c,
95% confidence interval CI = 0.70-0.91).

Discussion

Many phenomena can be modelled as collections of ele-
ments that interact through a complex set of connec-
tions. Network theory has become one of the most
successful frameworks for studying these phenomena
[60] and has led to major advances in our understanding
of ecological systems [61], social and communication
networks [62], brain connectivity [63] and metabolic and
gene regulatory pathways in living cells [64].

Using network theory, protein structure can be de-
scribed as mathematical graphs [28] that represent the
interatomic connections. The topological features of
amino acid residues, named nodes, can be described
using centrality measures that define the reciprocal rela-
tionship in terms of connectivity and capability to influ-
ence other nodes within the network. We focused on
the topological analysis of NaV1.7 gain-of-function
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Fig. 5 (See legend on next page.)
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Fig. 5 Network inter-residue connectivity of the IEM-associated mutations 1848T and N395K. a The graph shows the NaV1.7 sodium channel topology
and highlights the amino acids 1848 (D;; S4-S5) and N395 (D;; 56). Inter-domain bond interaction are depicted in red for the IEM associated mutation 1848T
and in green for the IEM associated mutation N395K. b Upper panels show 1848 and T848 networks, lower panels show N395 and K395 network. B, and
EB evidence interatomic traffic over the network. Red-to-white color gradient of amino acids (nodes) represents B value (red represents high B and
white low B,). Red-to-black color gradient of edges (amino acid interatomic interactions) corresponds to EB value (red represents high EB. and black
low EB). Hydrophobic bonds are showed in solid lines and H-bonds are indicated by dashed lines. 1848 present high EB., of connecting different parts of
the NaV1.7 network. Upper right panels show that 1848 interacts through hydrophobic interactions with S4-S5 (Dy) and pore (Dy) through 1845 and F1435
that are two residues having very high B, values (34 and 6.6, respectively) and H-bonds with V852 and L844 (1848[CO] with V852[NH]; I848[NH] with
L844[CQ]). Note the difference of B of the upper left panel (1848B, = 7.36) compared to the upper right panel (T848B. = 1.52). I848T mutation interrupts
the shortest paths within the network between Dy (S4-S5) and Dy (pore) and therefore AB, shifts to a negative value (-5.84). T848 interacts with F1435
through hydrophobic interactions and with S851 and L844 through H-bonds (T848[CO] with S851[NH]; T848[NH] with L844[COJ; T848[HG1] with
L844[CQ]). Lower panels show that N395 amino acid (red, S6 in pore module in D)) interacts with L1626 (54-S5) via hydrophobic bond and via H-bonds
formed by N395[CO] and A399[NH]and N395[NHJand F391[COJ. K395 mutation creates new hydrophobic bonds with V248 (S4-55, D), K398 (S6, Dy, V1747
(6, D), L1622 (54-S5, Dyy) and new H-bonds formed by K395[NZ] with N1751[CG] (S6, D)) and K395[NZ] with A1625[CO] (S4-S5, Dy). These new bonds
create a novel communication path within the network and thus increase B, value of the residue 395 (K395B.. = 7.76 compared to the left panel N395B

= 244). Edge thickness are proportional to EB.; and reveal that a high number of shortest paths pass through few edges

J

mutations identified in patients with painful disorders.
We considered a homology model of the NaV1.7 pore in
the closed state and calculated the interaction of the
nodes within the network through several measures of
topology.

Our findings show that AB. values tend to be sig-
nificantly higher in NaV1.7 pain-related mutations
than in control groups (nABN and hSNPs). B, repre-
sents the influence that the shortest communication
pathways have on the overall interatomic connec-
tions. Nodes with high B, value could efficiently in-
tegrate signals (e.g. energy) and the reduction of B,
value caused by single amino acid substitutions sug-
gests that the signalling transfer capability of the net-
work is decreased. Conversely, the increase of B
value suggests that a mutated node could facilitate
the load transfer through the shortest communication
pathways. Therefore, changes in AB. reflect in-
creased or decreased potential for connectivity of
amino acid within the protein and provides numer-
ical values about how single amino acid substitutions
might act as a bottleneck for specific nodes linking
different parts of the network. Previous studies of
network topological parameters revealed that effective
allosteric communications can be primarily provided
by structurally stable residues that exhibit high B,
[65]. Therefore, B., might provide a novel and useful
tool for identifying allosteric hotspots in comparison
with other centrality measures as previously sug-
gested [25, 66].

Using the cut-off value (AB *0.26) that maximizes
sensitivity and specificity, our data show that AB,, cor-
rectly classified 44 out of 53 controls variants (nABN
and hSNPs) and 23 out of 30 gain-of-function muta-
tions, yielding 76% sensitivity and 83% specificity. The
area under the ROC curve value for the AB,, scores was
0.81 (Fig. 6¢, 95% confidence interval CI = 0.70-0.91). By
contrast, our data show that none of other topological

parameters (D, CC,, C., and E.) differ significantly be-
tween controls and gain-of-function NaV1.7 mutations.
Although these data suggest that the pain-related
NaV1.7 gain-of-function mutations do not have signifi-
cant effects on the degree of connectivity, local cluster-
ing connectivity of the neighbour nodes (i.e. their
tendency to cluster together) and eccentricity (i.e. how
far is each node from any other node within the net-
work), it is important to consider that our results derive
from homology modelling constructed on the closed-
state pore domain of NaV1.7. A given residue may have
a number of distinct interaction networks within the
channel protein throughout the gating cycle, thus our
modeling captures a snap shot of these interactions, and
future studies are needed to further investigate inter-
action networks within the channel protein throughout
the gating cycle.

Our NaV1.7 modeling also suggests a link between
AB,; value and the buried or exposed nature of an
amino acid substitution. Indeed, gain-of-function mu-
tations predicted to be buried inside or close to the
core of the channel have higher |AB.| than the over-
all mean |AB,| =1.14 (3, S211P; 4, F216S; 11, I1234T;
5, 1228M;12, S241T; 13, 1848T; 15, L858H; 16, L858F;
24, N395K; 27, V872G; 30, A1746G) or the cut-off
value (>0.26) (6, 1739V; 25, V400M; 29, F1449V).
Conversely, gain-of-function mutations predicted to
face the lipid interface (exception: 1136V) have lower
|AB.| than the overall mean |AB.,| (1.14) (14,
G856D; 26, A863P; 28, M932L; 21, VI1316A; I8,
V1298D; 10, G1607R; 23, Al632E; exception:
M1627K) or the cut-off value |AB.| (<0.26) (17,
VI1298F; 19, V1299F; 20, P1308L; 2, RI185H; 8,
V1532L; 9, W1538R). Similarly, most of the control
variants (nABN/hSNPs) predicted to face the lipid
interface have low |AB.| (<0.26) (Fig. 6b and c).
Hence, in our NaV1.7 model, mutations predicted to
be buried into the core of the channel show higher
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|AB.| than those exposed at the interface of the
membrane. This finding suggests that lipophilic inter-
actions within the cell membrane may be disturbed
by the mutations. Additional studies are required to
more definitively assess the changes in lipophilic in-
teractions that are produced by these mutations. Irre-
spective of the underlying mechanistic/molecular
explanation, some pathogenic mutations would be
missed by our method. Thus, AB,, should be regarded
as a novel in-silico screening tool in addition to exist-
ing common predictive algorithms (e.g. Polyphen-2
[67], SIFT [68]) that could help in selecting pathogen-
etic mutations for functional testing.

Conclusions

Our findings demonstrate that most of the pathogenic
NaV1.7 mutations identified in patients affected by se-
vere painful disorders could be predicted, according to
our homology modelling, to cause profound changes in
the amino acid connectivity of the channel. Such modifi-
cation may underpin the gain-of-function effects meas-
urable in DRG nociceptors by electrophysiological
assays. Based on these findings, we propose to consider
Bct may therefore be a marker of pathogenic shift in the
mutant channels, though prospective experimental stud-
ies will be required to validate its effectiveness and its
biological meaning.
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