117 research outputs found

    Novel fungal genera and species associated with the sooty blotch and flyspeck complex on apple in China and the USA

    Get PDF
    Fungi in the sooty blotch and flyspeck (SBFS) complex cause blemishes on apple and pear fruit that result in economic losses for growers. The SBFS fungi colonise the epicuticular wax layer of pomaceous fruit but do not invade the cuticle. Fungi causing fuliginous and punctate mycelial types on apple are particularly difficult to identify based on morphological criteria because many species in the SBFS complex share the same mycelial phenotypes. We compared the morphology and nuclear ribosomal DNA phylogeny (ITS, LSU) of 11 fungal strains isolated from SBFS blemishes on apple obtained from two provinces in China and five states in the USA. Parsimony analysis, supported by cultural characteristics and morphology in vitro, provided support to delimit the isolates into three novel genera, representing five new species. Phaeothecoidiella, with two species, P. missouriensis and P. illinoisensis, is introduced as a new genus with pigmented endoconidia in the Dothideomycetes. Houjia (Capnodiales) is introduced for H. pomigena and H. yanglingensis. Although morphologically similar to Stanjehughesia (Chaetosphaeriaceae), Houjia is distinct in having solitary conidiogenous cells. Sporidesmajora (Capnodiales), based on S. pennsylvaniensis, is distinguished from Sporidesmium (Sordariomycetes) in having long, multiseptate conidiophores that frequently have a subconical, darkly pigmented apical cell, and very long, multi-euseptate conidia

    Partial Description of Quantum States

    Full text link
    One of the most central and controversial element of quantum mechanics is the use of non zero vectors of a Hilbert space (or, more generally, of one dimension subspaces) for representing the state of a quantum system. In particular, the question whether such a representation is complete has been debated since almost the early days of quantum mechanics. In this article, we develop an alternate way to formalize knowledge about the state of quantum systems, based solely on experimentally accessible elements, namely on outcomes of finite measurements. We introduce what we call partial description which, given a feasible measurement, indicates some outcomes which are known to be impossible (i.e. known to have a probability equal to 0 to occur) and hence have to be discarded. Then, we introduce partial states (which are partial descriptions providing as much information as possible) and compare this way to describe quantum states to the orthodox one, using vector rays. Finally, we show that partial states allow to describe quantum states in a strictly more expressive way that the orthodox description does

    Dissoconiaceae associated with sooty blotch and flyspeck on fruits in China and the United States

    Get PDF
    Zasmidium angulare, a novel species of Mycosphaerellaceae, and several novel taxa that reside in Dissoconiaceae, were identified from a collection of apples and Cucurbita maxima (cv. Blue Hubbard) from China and the USA that exhibited sooty blotch and flyspeck (SBFS) signs on their host substrata. Morphology on fruit surfaces and in culture, and phylogenetic analyses of the nuclear ribosomal DNAs 28S and internal transcribed spacer regions, as well as partial translation elongation factor 1-alpha gene sequences in some cases, were used to delineate seven previously unidentified species and three known species. Pseudoveronaea was established as a new genus of Dissoconiaceae, represented by two species, P. ellipsoidea and P. obclavata. Although Pseudoveronaea was morphologically similar to Veronaea, these fungi clustered with Dissoconiaceae (Capnodiales) rather than Chaetothyriales (Herpotrichiellaceae). Ramichloridium mali comb. nov., and three novel species, R. cucurbitae, R. luteum and R. punctatum were closely related with R. apiculatum, which together formed a distinct subclade in Dissoconiaceae. Species of Dissoconium s.lat. clustered in two well-supported clades supported by distinct morphological and cultural features. Subsequently Uwebraunia, a former synonym of Dissoconium, was resurrected for the one clade, with new combinations proposed for U. australiensis, U. commune, U. dekkeri and U. musae. Furthermore, we also reported that D. aciculare, Dissoconium sp., U. commune and U. dekkeri were associated with SBFS on apples

    Decoherence and wave function collapse

    Full text link
    The possibility of consistency between the basic quantum principles of quantum mechanics and wave function collapse is reexamined. A specific interpretation of environment is proposed for this aim and applied to decoherence. When the organization of a measuring apparatus is taken into account, this approach leads also to an interpretation of wave function collapse, which would result in principle from the same interactions with environment as decoherence. This proposal is shown consistent with the non-separable character of quantum mechanics

    On the lattice structure of probability spaces in quantum mechanics

    Full text link
    Let C be the set of all possible quantum states. We study the convex subsets of C with attention focused on the lattice theoretical structure of these convex subsets and, as a result, find a framework capable of unifying several aspects of quantum mechanics, including entanglement and Jaynes' Max-Ent principle. We also encounter links with entanglement witnesses, which leads to a new separability criteria expressed in lattice language. We also provide an extension of a separability criteria based on convex polytopes to the infinite dimensional case and show that it reveals interesting facets concerning the geometrical structure of the convex subsets. It is seen that the above mentioned framework is also capable of generalization to any statistical theory via the so-called convex operational models' approach. In particular, we show how to extend the geometrical structure underlying entanglement to any statistical model, an extension which may be useful for studying correlations in different generalizations of quantum mechanics.Comment: arXiv admin note: substantial text overlap with arXiv:1008.416

    Quantum Mechanics from Focusing and Symmetry

    Full text link
    A foundation of quantum mechanics based on the concepts of focusing and symmetry is proposed. Focusing is connected to c-variables - inaccessible conceptually derived variables; several examples of such variables are given. The focus is then on a maximal accessible parameter, a function of the common c-variable. Symmetry is introduced via a group acting on the c-variable. From this, the Hilbert space is constructed and state vectors and operators are given a clear interpretation. The Born formula is proved from weak assumptions, and from this the usual rules of quantum mechanics are derived. Several paradoxes and other issues of quantum theory are discussed.Comment: 26 page

    Seed-borne pathogens and electrical conductivity of soybean seeds

    Get PDF
    Adequate procedures to evaluate seed vigor are important. Regarding the electrical conductivity test (EC), the interference in the test results caused by seed-borne pathogens has not been clarified. This research was carried out to study the influence of Phomopsis sojae (Leh.) and Colletotrichum dematium (Pers. ex Fr.) Grove var. truncata (Schw.) Arx. fungi on EC results. Soybean seeds (Glycine max L.) were inoculated with those fungi using potato, agar and dextrose (PDA) medium with manitol (-1.0 MPa) and incubated for 20 h at 25 °C. The colony diameter, index of mycelial growth, seed water content, occurrence of seed-borne pathogens, physiological potential of the seeds, measured by germination and vigor tests (seed germination index, cold test, accelerated aging and electrical conductivity), and seedling field emergence were determined. The contents of K+, Ca2+, and Mg2+ in the seed and in the soaking solution were also determined. A complete 2 × 4 factorial design with two seed sizes (5.5 and 6.5 mm) and four treatments (control, seeds incubated without fungi, seeds incubated with Phomopsis and seeds incubated with Colletotrichum) were used with eight (5.5 mm large seeds) and six (6.5 mm large seeds) replications. All seeds submitted to PDA medium had their germination reduced in comparison to the control seeds. This reduction was also observed when seed vigor and leached ions were considered. The presence of Phomopsis sojae fungus in soybean seed samples submitted to the EC test may be the cause of misleading results

    State of the climate in 2013

    Get PDF
    In 2013, the vast majority of the monitored climate variables reported here maintained trends established in recent decades. ENSO was in a neutral state during the entire year, remaining mostly on the cool side of neutral with modest impacts on regional weather patterns around the world. This follows several years dominated by the effects of either La Niña or El Niño events. According to several independent analyses, 2013 was again among the 10 warmest years on record at the global scale, both at the Earths surface and through the troposphere. Some regions in the Southern Hemisphere had record or near-record high temperatures for the year. Australia observed its hottest year on record, while Argentina and New Zealand reported their second and third hottest years, respectively. In Antarctica, Amundsen-Scott South Pole Station reported its highest annual temperature since records began in 1957. At the opposite pole, the Arctic observed its seventh warmest year since records began in the early 20th century. At 20-m depth, record high temperatures were measured at some permafrost stations on the North Slope of Alaska and in the Brooks Range. In the Northern Hemisphere extratropics, anomalous meridional atmospheric circulation occurred throughout much of the year, leading to marked regional extremes of both temperature and precipitation. Cold temperature anomalies during winter across Eurasia were followed by warm spring temperature anomalies, which were linked to a new record low Eurasian snow cover extent in May. Minimum sea ice extent in the Arctic was the sixth lowest since satellite observations began in 1979. Including 2013, all seven lowest extents on record have occurred in the past seven years. Antarctica, on the other hand, had above-average sea ice extent throughout 2013, with 116 days of new daily high extent records, including a new daily maximum sea ice area of 19.57 million km2 reached on 1 October. ENSO-neutral conditions in the eastern central Pacific Ocean and a negative Pacific decadal oscillation pattern in the North Pacific had the largest impacts on the global sea surface temperature in 2013. The North Pacific reached a historic high temperature in 2013 and on balance the globally-averaged sea surface temperature was among the 10 highest on record. Overall, the salt content in nearsurface ocean waters increased while in intermediate waters it decreased. Global mean sea level continued to rise during 2013, on pace with a trend of 3.2 mm yr-1 over the past two decades. A portion of this trend (0.5 mm yr-1) has been attributed to natural variability associated with the Pacific decadal oscillation as well as to ongoing contributions from the melting of glaciers and ice sheets and ocean warming. Global tropical cyclone frequency during 2013 was slightly above average with a total of 94 storms, although the North Atlantic Basin had its quietest hurricane season since 1994. In the Western North Pacific Basin, Super Typhoon Haiyan, the deadliest tropical cyclone of 2013, had 1-minute sustained winds estimated to be 170 kt (87.5 m s-1) on 7 November, the highest wind speed ever assigned to a tropical cyclone. High storm surge was also associated with Haiyan as it made landfall over the central Philippines, an area where sea level is currently at historic highs, increasing by 200 mm since 1970. In the atmosphere, carbon dioxide, methane, and nitrous oxide all continued to increase in 2013. As in previous years, each of these major greenhouse gases once again reached historic high concentrations. In the Arctic, carbon dioxide and methane increased at the same rate as the global increase. These increases are likely due to export from lower latitudes rather than a consequence of increases in Arctic sources, such as thawing permafrost. At Mauna Loa, Hawaii, for the first time since measurements began in 1958, the daily average mixing ratio of carbon dioxide exceeded 400 ppm on 9 May. The state of these variables, along with dozens of others, and the 2013 climate conditions of regions around the world are discussed in further detail in this 24th edition of the State of the Climate series. © 2014, American Meteorological Society. All rights reserved

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
    • 

    corecore