81 research outputs found

    Charging Effects and Quantum Crossover in Granular Superconductors

    Full text link
    The effects of the charging energy in the superconducting transition of granular materials or Josephson junction arrays is investigated using a pseudospin one model. Within a mean-field renormalization-group approach, we obtain the phase diagram as a function of temperature and charging energy. In contrast to early treatments, we find no sign of a reentrant transition in agreement with more recent studies. A crossover line is identified in the non-superconducting side of the phase diagram and along which we expect to observe anomalies in the transport and thermodynamic properties. We also study a charge ordering phase, which can appear for large nearest neighbor Coulomb interaction, and show that it leads to first-order transitions at low temperatures. We argue that, in the presence of charge ordering, a non monotonic behavior with decreasing temperature is possible with a maximum in the resistance just before entering the superconducting phase.Comment: 15 pages plus 4 fig. appended, Revtex, INPE/LAS-00

    Evolution of wave packets in quasi-1D and 1D random media: diffusion versus localization

    Full text link
    We study numerically the evolution of wavepackets in quasi one-dimensional random systems described by a tight-binding Hamiltonian with long-range random interactions. Results are presented for the scaling properties of the width of packets in three time regimes: ballistic, diffusive and localized. Particular attention is given to the fluctuations of packet widths in both the diffusive and localized regime. Scaling properties of the steady-state distribution are also analyzed and compared with theoretical expression borrowed from one-dimensional Anderson theory. Analogies and differences with the kicked rotator model and the one-dimensional localization are discussed.Comment: 32 pages, LaTex, 11 PostScript figure

    The role of cytokine gene polymorphisms in the pathogenesis of abdominal aortic aneurysms: A case-control study

    Get PDF
    AbstractBackground: Cytokines are the primary mediators of inflammation and also influence matrix metalloproteinase expression, both of which are important in development of abdominal aortic aneurysm (AAA). A significant, but as yet unknown, familial factor contributes to the pathogenesis of AAA. Many cytokine genes contain polymorphic sites, some of which affect cytokine production in vitro. Cytokine gene polymorphisms may therefore influence the pathogenesis of AAA. The purpose of this study was to determine whether there is any association between cytokine gene polymorphisms and AAA. Methods and Results: This case-control study comprised 100 patients with AAA and 100 age-matched and sex-matched control subjects. For each case and control subject in the study, genotypes at the following cytokine gene polymorphic loci were determined: interleukin (IL)-1β +3953, IL-6 −174, IL-10 −1082, IL-10 −592, and tumor necrosis factors-α −308. Allele and genotype frequencies were compared between AAA and control groups, and odds ratios (OR) were calculated for the presence of AAA with each allele at each locus examined as risk factors. The IL-10 −1082 A allele was significantly more common in the AAA group than the control group (P =.03). The OR for the IL-10 −1082 A allele as a risk factor for AAA was 1.8 (95% confidence interval, 0.9-3.6). Discussion: These associations suggest a significant role for IL-10 in the pathogenesis of AAA. This association of AAA with the IL-10 −1082 A allele is also biologically plausible; the IL-10 −1082 A allele is associated with low IL-10 secretion, and it may be that AAA develops in patients who are unable to mount the same anti-inflammatory response as those who do not have AAA. (J Vasc Surg 2003;37:999-1005.

    Electroretinographic abnormalities in parents of patients with leber congenital amaurosis who have heterozygous GUCY2D mutations

    No full text
    Background: Leber congenital amaurosis (LCA) is an infrequently encountered congenital form of retinitis pigmentosa with marked genetic and clinical heterogeneity. Thus far, 10 genes have been identified in this disorder since 1996. In the future, LCA may become treatable by gene and/or pharmacological intervention, and these therapies will likely be gene specific, giving major significance to rapid gene identification and genephenotype studies. Objective: To test the hypothesis that parents of patients with LCA have identifiable electroretinographic and psychophysical changes. Subjects, Materials, and Methods: Complete eye examinations and electroretinographic studies were performed on 2 sets of parents whose offspring were diagnosed as having LCA and who were found to carry a mutation in 1 of the 10 LCA genes - GUCY2D. One set of parents also underwent static perimetry threshold measurements. Results: We found that single flash-light-adapted a- and b-wave amplitudes, 30-Hz flicker, or both cone signals were significantly decreased in amplitude in 4 heterozygotes, while 2 parents showed delayed 30-Hz flicker implicit times. Electroretinographic rod-mediated signals were normal in 2 of the heterozygotes, but subnormal in 2. Static perimetry testing showed normal thresholds in the 2 heterozygotes tested. Main Outcome Measures: Single flash-light-adapted a- and b- wave amplitudes and implicit times, 30- or 32-Hz flicker amplitudes and implicit times, rod-mediated signals, and dark-adapted, rod-mediated thresholds. Conclusions: Some carrier parents of patients with LCA and a GUCY2D mutation develop measurable, cone and possibly rod abnormalities most consistent with a mild conerod dysfunction. This correlates well with the known retinal expression pattern of GUCY2D, which is considerably higher in cone compared with rod photoreceptor cells
    corecore