952 research outputs found

    Dynamics of cholesteric structures in an electric field

    Full text link
    Motivated by Lehmann-like rotation phenomena in cholesteric drops we study the transverse drift of two types of cholesteric fingers, which form rotating spirals in thin layers of cholesteric liquid crystal in an ac or dc electric field. We show that electrohydrodynamic effects induced by Carr-Helfrich charge separation or flexoelectric charge generation can describe the drift of cholesteric fingers. We argue that the observed Lehmann-like phenomena can be understood on the same basis.Comment: 4 pages, 4 figures, submitted to PR

    The Adsorption of H2O on TiO2 and SnO2(110) Studied by First-Principles Calculations

    Full text link
    First-principles calculations based on density functional theory and the pseudopotential method have been used to investigate the energetics of H2_2O adsorption on the (110) surface of TiO2_2 and SnO2_2. Full relaxation of all atomic positions is performed on slab systems with periodic boundary conditions, and the cases of full and half coverage are studied. Both molecular and dissociative (H2_2O \rightarrow OH^- + H+^+) adsorption are treated, and allowance is made for relaxation of the adsorbed species to unsymmetrical configurations. It is found that for both TiO2_2 and SnO2_2 an unsymmetrical dissociated configuration is the most stable. The symmetrical molecularly adsorbed configuration is unstable with respect to lowering of symmetry, and is separated from the fully dissociated configuration by at most a very small energy barrier. The calculated dissociative adsorption energies for TiO2_2 and SnO2_2 are in reasonable agreement with the results of thermal desorption experiments. Calculated total and local electronic densities of states for dissociatively and molecularly adsorbed configurations are presented and their relation with experimental UPS spectra is discussed

    Runaway Events Dominate the Heavy Tail of Citation Distributions

    Full text link
    Statistical distributions with heavy tails are ubiquitous in natural and social phenomena. Since the entries in heavy tail have disproportional significance, the knowledge of its exact shape is very important. Citations of scientific papers form one of the best-known heavy tail distributions. Even in this case there is a considerable debate whether citation distribution follows the log-normal or power-law fit. The goal of our study is to solve this debate by measuring citation distribution for a very large and homogeneous data. We measured citation distribution for 418,438 Physics papers published in 1980-1989 and cited by 2008. While the log-normal fit deviates too strong from the data, the discrete power-law function with the exponent γ=3.15\gamma=3.15 does better and fits 99.955% of the data. However, the extreme tail of the distribution deviates upward even from the power-law fit and exhibits a dramatic "runaway" behavior. The onset of the runaway regime is revealed macroscopically as the paper garners 1000-1500 citations, however the microscopic measurements of autocorrelation in citation rates are able to predict this behavior in advance.Comment: 6 pages, 5 Figure

    Dynamics of liquid He-4 in confined geometries from Time-Dependent Density Functional calculations

    Full text link
    We present numerical results obtained from Time-Dependent Density Functional calculations of the dynamics of liquid He-4 in different environments characterized by geometrical confinement. The time-dependent density profile and velocity field of He-4 are obtained by means of direct numerical integration of the non-linear Schrodinger equation associated with a phenomenological energy functional which describes accurately both the static and dynamic properties of bulk liquid He-4. Our implementation allows for a general solution in 3-D (i.e. no symmetries are assumed in order to simplify the calculations). We apply our method to study the real-time dynamics of pure and alkali-doped clusters, of a monolayer film on a weakly attractive surface and a nano-droplet spreading on a solid surface.Comment: q 1 tex file + 9 Ps figure

    A calibration method for broad-bandwidth cavity enhanced absorption spectroscopy performed with supercontinuum radiation

    Get PDF
    An efficient calibration method has been developed for broad-bandwidth cavity enhanced absorption spectroscopy. The calibration is performed using phase shift cavity ring-down spectroscopy, which is conveniently implemented through use of an acousto-optic tunable filter (AOTF). The AOTF permits a narrowband portion of the SC spectrum to be scanned over the full high-reflectivity bandwidth of the cavity mirrors. After calibration the AOTF is switched off and broad-bandwidth CEAS can be performed with the same light source without any loss of alignment to the set-up. We demonstrate the merits of the method by probing transitions of oxygen molecules O-2 and collisional pairs of oxygen molecules (O-2)(2) in the visible spectral range

    On the relative importance of monetary transmission channels in Turkey

    Get PDF
    The main objective of this study is to provide additional evidence on the operation and relative importance of monetary transmission channels in Turkey. The results of the VAR analysis conducted using monthly data between January 2004 and November 2013 suggest that the traditional channels of interest rates, exchange rates, and credit do work in Turkish economy. However, the most striking finding of the study is the relative importance of exchange rate channel in the transmission of monetary policy decision into real economy. Variance decomposition analysis shows that the explained variance by real effective exchange rates is higher for all variables as compared to the variance explained by interest rates. However, interest rates seem to be still a useful tool to manage monetary policy given its role in controlling the changes in exchange rates. The granger causality analysis points into the fact that while interest rates have a role in leading the volatility of exchange rates, exchange rates have an impact on foreign debt holdings of banks and credit growth. On the other hand, foreign debt positions of banks and other sector firms together with credit growth granger causes industrial production. The study has some remarkable ramifications in terms of monetary policy design

    Scale-free memory model for multiagent reinforcement learning. Mean field approximation and rock-paper-scissors dynamics

    Full text link
    A continuous time model for multiagent systems governed by reinforcement learning with scale-free memory is developed. The agents are assumed to act independently of one another in optimizing their choice of possible actions via trial-and-error search. To gain awareness about the action value the agents accumulate in their memory the rewards obtained from taking a specific action at each moment of time. The contribution of the rewards in the past to the agent current perception of action value is described by an integral operator with a power-law kernel. Finally a fractional differential equation governing the system dynamics is obtained. The agents are considered to interact with one another implicitly via the reward of one agent depending on the choice of the other agents. The pairwise interaction model is adopted to describe this effect. As a specific example of systems with non-transitive interactions, a two agent and three agent systems of the rock-paper-scissors type are analyzed in detail, including the stability analysis and numerical simulation. Scale-free memory is demonstrated to cause complex dynamics of the systems at hand. In particular, it is shown that there can be simultaneously two modes of the system instability undergoing subcritical and supercritical bifurcation, with the latter one exhibiting anomalous oscillations with the amplitude and period growing with time. Besides, the instability onset via this supercritical mode may be regarded as "altruism self-organization". For the three agent system the instability dynamics is found to be rather irregular and can be composed of alternate fragments of oscillations different in their properties.Comment: 17 pages, 7 figur

    Analytic Methods in Nonperturbative QCD

    Full text link
    Recently developed analytic methods in the framework of the Field Correlator Method are reviewed in this series of four lectures and results of calculations are compared to lattice data and experiment. Recent lattice data demonstrating the Casimir scaling of static quark interaction strongly support the FCM and leave very little space for all other theoretical models, e.g. instanton gas/liquid model. Results of calculations for mesons, baryons, quark-gluon plasma and phase transition temperature demonstrate that new analytic methods are a powerful tool of nonperturbative QCD along with lattice simulations.Comment: LaTeX, 34 pages; Lectures given at the 13th Indian-Summer School "Understanding the Structure of Hadrons", August 28 - September 1, 2000, Prague, Czech Republi
    corecore