769 research outputs found
The serum proteome of Atlantic salmon, Salmo salar, during pancreas disease (PD) following infection with salmonid alphavirus subtype 3 (SAV3)
Salmonid alphavirus is the aetological agent of pancreas disease (PD) in marine Atlantic salmon, Salmo salar, and rainbow trout, Oncorhynchus mykiss, with most outbreaks in Norway caused by SAV subtype 3 (SAV3). This atypical alphavirus is transmitted horizontally causing a significant economic impact on the aquaculture industry. This histopathological and proteomic study, using an established cohabitational experimental model, investigated the correlation between tissue damage during PD and a number of serum proteins associated with these pathologies in Atlantic salmon. The proteins were identified by two-dimensional electrophoresis, trypsin digest and peptide MS/MS fingerprinting. A number of humoral components of immunity which may act as biomarkers of the disease were also identified. For example, creatine kinase, enolase and malate dehydrogenase serum concentrations were shown to correlate with pathology during PD. In contrast, hemopexin, transferrin, and apolipoprotein, amongst others, altered during later stages of the disease and did not correlate with tissue pathologies. This approach has given new insight into not only PD but also fish disease as a whole, by characterisation of the protein response to infection, through pathological processes to tissue recovery.
Biological significance:
Salmonid alphavirus causes pancreas disease (PD) in Atlantic salmon, Salmo salar, and has a major economic impact on the aquaculture industry. A proteomic investigation of the change to the serum proteome during PD has been made with an established experimental model of the disease. Serum proteins were identified by two-dimensional electrophoresis, trypsin digest and peptide MS/MS fingerprinting with 72 protein spots being shown to alter significantly over the 12 week period of the infection. The concentrations of certain proteins in serum such as creatine kinase, enolase and malate dehydrogenase were shown to correlate with tissue pathology while other proteins such as hemopexin, transferrin, and apolipoprotein, altered in concentration during later stages of the disease and did not correlate with tissue pathologies. The protein response to infection may be used to monitor disease progression and enhance understanding of the pathology of PD
Chaos and flights in the atom-photon interaction in cavity QED
We study dynamics of the atom-photon interaction in cavity quantum
electrodynamics (QED), considering a cold two-level atom in a single-mode
high-finesse standing-wave cavity as a nonlinear Hamiltonian system with three
coupled degrees of freedom: translational, internal atomic, and the field. The
system proves to have different types of motion including L\'{e}vy flights and
chaotic walkings of an atom in a cavity. It is shown that the translational
motion, related to the atom recoils, is governed by an equation of a parametric
nonlinear pendulum with a frequency modulated by the Rabi oscillations. This
type of dynamics is chaotic with some width of the stochastic layer that is
estimated analytically. The width is fairly small for realistic values of the
control parameters, the normalized detuning and atomic recoil
frequency . It is demonstrated how the atom-photon dynamics with a
given value of depends on the values of and initial
conditions. Two types of L\'{e}vy flights, one corresponding to the ballistic
motion of the atom and another one corresponding to small oscillations in a
potential well, are found. These flights influence statistical properties of
the atom-photon interaction such as distribution of Poincar\'{e} recurrences
and moments of the atom position . The simulation shows different regimes of
motion, from slightly abnormal diffusion with at to a superdiffusion with at that
corresponds to a superballistic motion of the atom with an acceleration. The
obtained results can be used to find new ways to manipulate atoms, to cool and
trap them by adjusting the detuning .Comment: 16 pages, 7 figures. To be published in Phys. Rev.
Vacuum local and global electromagnetic self-energies for a point-like and an extended field source
We consider the electric and magnetic energy densities (or equivalently field
fluctuations) in the space around a point-like field source in its ground
state, after having subtracted the spatially uniform zero-point energy terms,
and discuss the problem of their singular behavior at the source's position. We
show that the assumption of a point-like source leads, for a simple Hamiltonian
model of the interaction of the source with the electromagnetic radiation
field, to a divergence of the renormalized electric and magnetic energy density
at the position of the source. We analyze in detail the mathematical structure
of such singularity in terms of a delta function and its derivatives. We also
show that an appropriate consideration of these singular terms solves an
apparent inconsistency between the total field energy and the space integral of
its density. Thus the finite field energy stored in these singular terms gives
an important contribution to the self-energy of the source. We then consider
the case of an extended source, smeared out over a finite volume and described
by an appropriate form factor. We show that in this case all divergences in
local quantities such as the electric and the magnetic energy density, as well
as any inconsistency between global and space-integrated local self-energies,
disappear.Comment: 8 pages. The final publication is available at link.springer.co
Synthesis and biochemical studies of 17-substituted androst-3-enes and 3,4-epoxyandrostanes as aromatase inhibitors
http://www.sciencedirect.com/science/article/B6TC9-4T0WJXG-2/2/58305e64e3c068f352293a693f168db
Coherent Photoproduction of pi^+ from 3^He
We have measured the differential cross section for the
He reaction. This reaction was studied using
the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. Real photons
produced with the Hall-B bremsstrahlung tagging system in the energy range from
0.50 to 1.55 GeV were incident on a cryogenic liquid He target. The
differential cross sections for the He
reaction were measured as a function of photon-beam energy and pion-scattering
angle. Theoretical predictions to date cannot explain the large cross sections
except at backward angles, showing that additional components must be added to
the model.Comment: 11 pages, 16 figure
First measurement of direct photoproduction on the proton
We report on the results of the first measurement of exclusive
meson photoproduction on protons for GeV and GeV. Data were collected with the CLAS detector at the Thomas
Jefferson National Accelerator Facility. The resonance was detected via its
decay in the channel by performing a partial wave analysis of the
reaction . Clear evidence of the meson
was found in the interference between and waves at GeV. The -wave differential cross section integrated in the mass range of
the was found to be a factor of 50 smaller than the cross section
for the meson. This is the first time the meson has been
measured in a photoproduction experiment
Unveiling nano-scaled chemical inhomogeneity impacts on corrosion of Ce-modified 2507 super-duplex stainless steels
The widely used stainless steels and their deformed variants are anticorrosive in ambient conditions due to passivation layers composed of chromium oxides. Conventionally, corrosion and erosion of the steels are attributed to the breakdown of such layers but seldomly to the origin that depends on surface heterogeneity at the microscopic level. In this work, the nanometer-scaled chemical heterogeneity at the surface unveiled via spectro-microscopy and chemometric analysis unexpectedly dominates the breakdown and corrosion behavior of the cold-rolled Ce-modified 2507 super-duplex stainless steels (SDSS) over its hot-deformed counterpart. Though relatively uniformly covered by a native Cr2O3 layer revealed by X-ray photoemission electron microscopy, the cold-rolled SDSS behaved poorly in passivity because of locally distributed Fe3+ rich nano-islands over the Fe/Cr oxide layer. This atomic-level knowledge provides a deep understanding of corrosion of stainless steel and is expected to benefit corrosion controls of similar high-alloyed metals
A measurement of the tau mass and the first CPT test with tau leptons
We measure the mass of the tau lepton to be 1775.1+-1.6(stat)+-1.0(syst.) MeV
using tau pairs from Z0 decays. To test CPT invariance we compare the masses of
the positively and negatively charged tau leptons. The relative mass difference
is found to be smaller than 3.0 10^-3 at the 90% confidence level.Comment: 10 pages, 4 figures, Submitted to Phys. Letts.
- …