395 research outputs found

    X-boson cumulant approach to the periodic Anderson model

    Full text link
    The Periodic Anderson Model (PAM) can be studied in the infinite U limit by employing the Hubbard X operators to project out the unwanted states. We have already studied this problem employing the cumulant expansion with the hybridization as perturbation, but the probability conservation of the local states (completeness) is not usually satisfied when partial expansions like the Chain Approximation (CHA) are employed. Here we treat the problem by a technique inspired in the mean field approximation of Coleman's slave-bosons method, and we obtain a description that avoids the unwanted phase transition that appears in the mean-field slave-boson method both when the chemical potential is greater than the localized level Ef at low temperatures (T) and for all parameters at intermediate T.Comment: Submited to Physical Review B 14 pages, 17 eps figures inserted in the tex

    Self-Trapped Exciton Defects in a Charge Density Wave: Electronic Excitations of BaBiO3

    Full text link
    In the previous paper, it was shown that holes doped into BaBiO3 self-trap as small polarons and bipolarons. These point defects are energetically favorable partly because they undo locally the strain in the charge-density-wave (Peierls insulator) ground state. In this paper the neutral excitations of the same model are discussed. The lowest electronic excitation is predicted to be a self-trapped exciton, consisting of an electron and a hole located on adjacent Bi atoms. This excitation has been seen experimentally (but not identified as such) via the Urbach tail in optical absorption, and the multi-phonon spectrum of the ``breathing mode'' seen in Raman scattering. These two phenomena occur because of the Franck-Condon effect associated with oxygen displacement in the excited state.Comment: 5 pages with 7 embedded figures. See also cond-mat/0108089 on polarons and bipolarons in BaBiO3 contains background informatio

    Omega-6 to omega-3 polyunsaturated fatty acid ratio and subsequent mood disorders in young people with at-risk mental states: a 7-year longitudinal study

    Get PDF
    While cross-sectional studies suggest that patients with mood disorders have a higher ratio of omega-6 to omega-3 polyunsaturated fatty acids (PUFAs) and lower levels of omega-3 PUFAs, it is unknown if a high n-6/3 ratio indicates vulnerability for depression. We tested this hypothesis in a 7-year follow-up study of young individuals with an ultra-high risk (UHR) phenotype. We conducted a secondary analysis of the Vienna omega-3 study, a longitudinal study of omega-3 PUFAs in individuals at UHR for psychosis (n = 69). Levels of n-6 and n-3 PUFAs were measured in the phosphatidylethanolamine fraction of erythrocyte membranes at intake into the study. Mood disorder diagnosis was ascertained with the Structured Clinical Interview for DSM-IV-TR and confirmed by review of medical records and interviews of caregivers. A higher n-6/3 PUFA ratio at baseline predicted mood disorders in UHR individuals over a 7-year (median) follow-up (odds ratio = 1.89, 95% CI = 1.075-3.338, P = 0.03). This association remained significant after adjustment for age, gender, smoking, severity of depressive symptoms at baseline and n-3 supplementation. Consistent results were obtained for individual PUFAs, including lower levels of eicosapentaenoic acid and docosahexaenoic acid. The predictive capacity of these findings was specific to mood disorders as no associations were found for any other psychiatric disorder. To our knowledge, our data provide the first prospective evidence that the n-6/3 PUFA ratio is associated with an increased risk for mood disorders in young people exhibiting an UHR phenotype. These findings may have important implications for treatment and risk stratification beyond clinical characteristics

    Variable-range hopping in quasi-one-dimensional electron crystals

    Full text link
    We study the effect of impurities on the ground state and the low-temperature dc transport in a 1D chain and quasi-1D systems of many parallel chains. We assume that strong interactions impose a short-range periodicicity of the electron positions. The long-range order of such an electron crystal (or equivalently, a 4kF4 k_F charge-density wave) is destroyed by impurities. The 3D array of chains behaves differently at large and at small impurity concentrations NN. At large NN, impurities divide the chains into metallic rods. The low-temperature conductivity is due to the variable-range hopping of electrons between the rods. It obeys the Efros-Shklovskii (ES) law and increases exponentially as NN decreases. When NN is small, the metallic-rod picture of the ground state survives only in the form of rare clusters of atypically short rods. They are the source of low-energy charge excitations. In the bulk the charge excitations are gapped and the electron crystal is pinned collectively. A strongly anisotropic screening of the Coulomb potential produces an unconventional linear in energy Coulomb gap and a new law of the variable-range hopping lnσ(T1/T)2/5-\ln\sigma \sim (T_1 / T)^{2/5}. T1T_1 remains constant over a finite range of impurity concentrations. At smaller NN the 2/5-law is replaced by the Mott law, where the conductivity gets suppressed as NN goes down. Thus, the overall dependence of σ\sigma on NN is nonmonotonic. In 1D, the granular-rod picture and the ES apply at all NN. The conductivity decreases exponentially with NN. Our theory provides a qualitative explanation for the transport in organic charge-density wave compounds.Comment: 20 pages, 7 figures. (v1) The abstract is abridged to 24 lines. For the full abstract, see the manuscript (v2) several changes in presentation per referee's comments. No change in result

    Ionization degree of the electron-hole plasma in semiconductor quantum wells

    Get PDF
    The degree of ionization of a nondegenerate two-dimensional electron-hole plasma is calculated using the modified law of mass action, which takes into account all bound and unbound states in a screened Coulomb potential. Application of the variable phase method to this potential allows us to treat scattering and bound states on the same footing. Inclusion of the scattering states leads to a strong deviation from the standard law of mass action. A qualitative difference between mid- and wide-gap semiconductors is demonstrated. For wide-gap semiconductors at room temperature, when the bare exciton binding energy is of the order of T, the equilibrium consists of an almost equal mixture of correlated electron-hole pairs and uncorrelated free carriers.Comment: 22 pages, 6 figure

    Ground-state phase diagram of the one-dimensional half-filled extended Hubbard model

    Get PDF
    We revisit the ground-state phase diagram of the one-dimensional half-filled extended Hubbard model with on-site (U) and nearest-neighbor (V) repulsive interactions. In the first half of the paper, using the weak-coupling renormalization-group approach (g-ology) including second-order corrections to the coupling constants, we show that bond-charge-density-wave (BCDW) phase exists for U \approx 2V in between charge-density-wave (CDW) and spin-density-wave (SDW) phases. We find that the umklapp scattering of parallel-spin electrons disfavors the BCDW state and leads to a bicritical point where the CDW-BCDW and SDW-BCDW continuous-transition lines merge into the CDW-SDW first-order transition line. In the second half of the paper, we investigate the phase diagram of the extended Hubbard model with either additional staggered site potential \Delta or bond alternation \delta. Although the alternating site potential \Delta strongly favors the CDW state (that is, a band insulator), the BCDW state is not destroyed completely and occupies a finite region in the phase diagram. Our result is a natural generalization of the work by Fabrizio, Gogolin, and Nersesyan [Phys. Rev. Lett. 83, 2014 (1999)], who predicted the existence of a spontaneously dimerized insulating state between a band insulator and a Mott insulator in the phase diagram of the ionic Hubbard model. The bond alternation \delta destroys the SDW state and changes it into the BCDW state (or Peierls insulating state). As a result the phase diagram of the model with \delta contains only a single critical line separating the Peierls insulator phase and the CDW phase. The addition of \Delta or \delta changes the universality class of the CDW-BCDW transition from the Gaussian transition into the Ising transition.Comment: 24 pages, 20 figures, published versio

    Phase diagram of the one-dimensional extended attractive Hubbard model for large nearest-neighbor repulsion

    Full text link
    We consider the extended Hubbard model with attractive on-site interaction U and nearest-neighbor repulsions V. We construct an effective Hamiltonian H_{eff} for hopping t<<V and arbitrary U<0. Retaining the most important terms, H_{eff} can be mapped onto two XXZ models, solved by the Bethe ansatz. The quantum phase diagram shows two Luttinger liquid phases and a region of phase separation between them. For density n<0.422 and U<-4, singlet superconducting correlations dominate at large distances. For some parameters, the results are in qualitative agreement with experiments in BaKBiO.Comment: 6 pages, 3 figures, submitted to Phys. Rev.

    Field dependence of the vortex structure in chiral p-wave superconductors

    Full text link
    To investigate the different vortex structure between two chiral pairing p_x +(-) i p_y, we calculate the pair potential, the internal field, the local density of states, and free energy in the vortex lattice state based on the quasiclassical Eilenberger theory, and analyze the magnetic field dependence. The induced opposite chiral component of the pair potential plays an important role in the vortex structure. It also produces H^{1/2}-behavior of the zero-energy density of states at higher field. These results are helpful when we understand the vortex states in Sr2RuO4.Comment: 11 pages, 10 figures, to be published in Phys. Rev.

    Edge states and determination of pairing symmetry in superconducting Sr2RuO4

    Full text link
    We calculate the energy dispersion of the surface Andreev states and their contribution to tunneling conductance for the order parameters with horizontal and vertical lines of nodes proposed for superconducting Sr2RuO4. For vertical lines, we find double peaks in tunneling spectra reflecting the van Hove singularities in the density of surface states originating from the turning points in their energy dispersion. For horizontal lines, we find a single cusp-like peak at zero bias, which agrees very well with the experimental data on tunneling in Sr2RuO4.Comment: 6 pages, 6 figures. V.2: comparison with experiment added and discussion of horizontal nodes expanded. v.3: significant expansion: 1 figure and 2 pages added. v.4: acknowledgements added. Additional viewgraphs with experimental and theoretical curves superimposed are available at http://www2.physics.umd.edu/~yakovenk/talks/Sr2RuO4
    corecore