
PFC/JA 86-17

Impurity Generation During ICRF Heating Experiments

on Alcator C

H.L. Manning, J.L. Terry, B. Lipschultz,
B. LaBombard, B. D. Blackwell, C. L. Fiore

M.E. Foord, E.S. Marmar, J.D. Moody, R. R. Parker,
M. Porkolab, J.E. Rice

Plasma Fusion Center
Massachusetts Institute of Technology

Cambridge, MA 02139

August 1986

Submitted to NUCLEAR FUSION

This work was supported by the U.S. Department of Energy Contract
No. DE-AC02-78ET51013. Reproduction, translation, publication, use
and disposal, in whole or in part by or for the United States govern-
ment is permitted.

By acceptance of this article, the publisher and/or recipient ac-
knowledges the U.S. Government's right to retain a non-exclusive,
royalty-free license in and to any copyright covering this paper.



Impurity Generation During ICRF Heating Experiments
on Alcator C

H.L. Manning1 , J.L. Terry, B. Lipschultz, B. LaBombard2, B.D. Blackwell 3 ,
C.L. Fiore, M.E. Foord, E.S. Marmar, J.D. Moody,

R.R. Parker, M. Porkolab, J.E. Rice

Plasma Fusion Center, Massachusetts Institute of Technology
Cambridge, Massachusetts, United States of America

Abstract

Observations of impurity behavior are presented from ICRF heating experiments at
180 MHz performed over a variety of conditions on the Alcator C tokamak, using graphite
limiters and stainless steel antenna Faraday shields. Spectroscopic observations revealed
significant increases in metal impurity concentrations during the RF pulse, with iron levels
increasing by as much as a factor of 12 at the highest RF powers (- 350-400 kW). Analysis
of the inferred iron source rates shows an approximately linear dependence on RF power up
to 400 kW. with no clear dependence on resonance conditions or bulk plasma parameters.
However, a sharp increase in the temperature in the limiter shadow region was observed
during the ICRF pulse, which was well correlated with the iron influx rate. It is concluded
from this and other evidence that physical sputtering of the Faraday shield due to an
elevated sheath potential is the primary source of metal impurities during ICRF heating
on Alcator C. The same process, occurring at the graphite limiter, is believed to be the
dominant source of carbon and oxygen. Calculated sputtering yields obtained from an
edge erosion code demonstrate the plausibility of this model.
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1. Introduction

Resonant heating of fusion plasmas via absorption of waves launched in the Ion

Cyclotron Range of Frequencies (ICRF) has long been considered an attractive method

of efficiently raising plasma temperatures to reactor levels [1]. As discussed below, early

ICRF experiments on tokamaks were often plagued by large metallic impurity influxes

which severely limited the amount of RF power that could be successfully delivered to the

plasma and the temperature increases obtained. Although several recent experiments have

studied and, to some extent, overcome this problem [2-7], there remains no clear consensus

as to the principal source of metal impurities or the dominant mechanism for their release.

Impurity generation during ICRF heating involves the complex interactions between the

scrape-off layer (SOL) plasma, the RF fields, and the materials exposed to the SOL [8]:

the limiter, the walls, and the ICRF antenna structure, which must be near the plasma

to ensure good coupling. In order to extend ICRF heating to reactor level powers, further

understanding of these interactions is needed to minimize the enhanced radiated power

losses and impurity concentrations which persist in most of the current high power ICRF

experiments.

On a high field, high density tokamak such as Alcator C, the high density plasma

and limited port access render auxiliary heating via neutral beam injection (NBI) diffi-

cult. It is therefore especially important to understand the physics of RF heating on such

devices. Impurity control is also vital, since the high electron densities involved lead to rel-

atively high radiated power losses per impurity ion. This paper presents the first impurity

measurements during ICRF heating experiments on the Alcator C Tokamak.

Early ICRF experiments at PLT, using stainless steel limiters, found the central iron

concentration saturating at. elevated but acceptable levels for 500 kW RF [9,10]. Since

the installation of carbon limiters in 1980, metal impurity levels have dropped for ohmic

(OH), RF, and NBI heated discharges, with radiated power now dominated by low Z

(CO) radiation from the peripheral plasma [2,11,12]. Metal impurity generation was

further reduced through the use of carbon shields on the lateral faces of the metal antenna

Faraday shields. However, both total radiated power (:: 30% PRF) and metal impurity

concentrations scaled linearly with RF power. PLT researchers concluded that the metal

surfaces closest to the plasma contribute the most metal impurities, especially the Faraday

shield (~ 3 cm outside the limiter radius), although the wall (10 cm outside the limiter

radius) also contributes. The impurity influx appeared to be independent of ICRF heating

mode or antenna poloidal extent.

ICRF experiments on TFR [3,13-19] used a graphite limiter and graphite "lateral
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protections" on the antenna sides normal to the toroidal field to overcome an earlier dom-

inance of central radiated power losses due to metals, yielding good heating results at

PRF < 1.2 MW. However, metal impurity radiation continued to scale linearly with PRF

and was higher than for comparable OH and NBI powers. Results indicated that impu-

rities generated from the antenna Faraday shield originated chiefly on the lateral surfaces

(rather than the front surface facing the plasma) [3,19]. However, all metal surfaces in the

SOL were judged to contribute to the metal influx, with no single dominant source. Metal

impurity production in TFR was a non-local process attributed to changes in the SOL.

This conclusion was supported by Langmuir probe measurements, in which the boundary

electron density (neb ) and temperature (Teb ) were observed to rise, with Tb proportional

to PRF up to 300 kW.

Increases of as much as 20-fold in radiated power due to the influx of metallic im-

purities also forced researchers at tokamak JFT-2 to abandon metal limiters and Faraday

shields in favor of graphite limiters and TiC-coated shields [20,21]. Sputtering due to fast

ions generated from some coupling of the ICRF power into the evanescent slow wave at

the plasma edge was offered as a possible impurity generation mechanism by Kimura et al.

[22]. More recently, researchers at the larger JFT-2M tokamak successfully applied up

to 800 kW ICRF by utilizing graphite limiters and Ti Faraday shields [23,24]. Langmuir

probes revealed a rise in the boundary electron temperature, Teb, which was linear with

respect to PRF, and about twice as large as for similar NBI powers. It was concluded that

sputtering of the limiter by ions accelerated through the sheath potential (-Ish -: 3Tb)

was the dominant channel for the release of carbon and oxygen, but that some localized

"additional mechanism" caused the Ti and Fe influx, only releasing iron from the walls

near the antenna. It was suggested that sputtering via acceleration of both protons and

mnultiply-charged low Z impurity ions by the strong reactive ERF fields generated near the

antenna was the dominant source of metal impurities during these experiments.

ICRF heating experiments on the Nagoya tokamak, JIPP T-II [25], also encountered

limitations due to metal impurity influx. Later results from the expanded JIPP T-IIU

[26,27] showed that the brightness of line radiation from the limiter material (either steel

or graphite) increased strongly as a function of PRF. Probe measurements made at a

radius between the Faraday shield and wall showed a linear increase with PRF of both Teb

and neb .

The common thread in all of these experiments is a significant change in the SOL,

but the extent to which this perturbation is judged to be localized to the antenna region

(fringing ERF field effects, loss of fast banana-trapped particles) or global (rise in' Te6 ,

changes in neb, changes in recycling) seems to vary. Also, there is no clear agreement as
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to the relative importance of direct coupling to electrostatic waves in the plasma edge,
causing elevated Tb and/or fast ions, or of orbit or ripple losses of fast ions from the

plasma core. It is likely that the various antenna designs, plasma edge characteristics, and

choices of materials used in the above experiments have resulted in a variety of dominant

impurity generation processes.

This paper presents impurity results from ICRF heating experiments at 180 MHz

performed over a variety of conditions on the Alcator C Tokamak, using graphite limiters

and stainless steel Faraday shields. Spectroscopic observations of impurity line radiation

revealed large increases in metal impurity concentrations (Fe, Cr, Ni, Mo) during the RF

pulse. Much smaller increases in carbon and oxygen were seen. Analysis of the inferred iron

source rates shows an approximately linear dependence on RF power up to 400 kW, with

no clear dependence on working gas (H or D), number of antennas used, or on resonance

conditions (H 2nd harmonic, H minority in D, or off resonance). No correlation is observed

with the presence of an ion tail or bulk ion heating. However, Langmuir probe data

indicated a sharp increase in the temperature in the limiter shadow region during the ICRF

pulse, well correlated with the iron influx rate. The behavior of carbon and iron during

the highest power ICRF shots is in reasonable agreement with calculated sputtering yields

of thermal ions (both hydrogen and impurity) striking, respectively, the graphite limiter

at r = 12.5 cm and the Faraday shield at 13.2 cm. (The stainless steel wall is located at

r = 19.2 cm.) This calculation uses the measured changes in the plasma edge temperature

and density profiles.

Experimental details are presented in Section 2, with descriptions of Alcator C and

the ICRF heating program, as well as diagnostics. The VUV spectrograph used to monitor

impurities is described, and representative VUV spectra before and during ICRF heating

are shown. Section 3 gives detailed information on the impurity influx. Impurity concen-

trations, Zeff contributions, radiated power, and temporal behavior are presented. A one

dimensional impurity transport code used to relate measured line brightnesses to derived

quantities is described. The change in Zeff during the RF pulse is shown to increase with

increasing PRF . Section 4 is concerned with the possible sources and release mechanisms

responsible for the enhanced impurity influx. Results from surface analysis of the graphite

limiter are presented, showing significant metal contamination. In order to compare the im-

purity influx with various plasma and RF parameters, data from many shots were compiled

and analyzed. The edge source rate of iron (the dominant metal impurity) was selected as

the variable best representing impurity generation. This quantity, SFe, was deduced from

measured iron line brightnesses through use of the transport code. Results of this survey

and the correlations with edge probe measurements strongly suggest that physical sputter-
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ing of both the limiters and Faraday shields through enhanced sheath potentials (due to

elevated edge temperatures) is the primary cause of impurity release. Section 5 discusses

the edge erosion code, the results of which are consistent with the above conclusion. A

discussion of the Alcator C results and conclusions follows in section 6, with an attempt to

place them in the context of the other tokamak ICRF experiments. Section 7 closes with

a summary.

2. Experimental Details

This paper contains results from the first phase of the Alcator C ICRF heating pro-

gram, conducted in 1984 [28,29]. Up to 400 kW of RF power at 180 MHz was delivered

to the ICRF antenna, a full turn poloidal loop consisting of two pairs of half-turns which

could be driven singly or together. The antenna Faraday shield was made of stainless steel

and had an inner radius at r = 13.2 cm. Each half-loop was 4 cm wide in the toroidal

direction. In these experiments, the ICRF power density at the antenna was as high as 1.4

kW/cm 2 . However, the total ICRF input power never exceeded the Ohmic power. The

target plasmas (a = 12.5 cm, R = 64 cm, i- = 0.4-2.6x 104 cm- 3 , Ip = 130-460 kA,

BT = 6-12 T) had two graphite limiters separated toroidally by 1800. The antenna port

was located 60' from the nearest limiter. ICRF power was launched in regimes of hydro-

gen second harmonic heating at BT ~ 6 T, of hydrogen minority (0.5-3.0%) heating in a

deuterium plasma at BT ~~ 12 T, and under non-resonant conditions (BT ~ 7-8 T in H,

BT _ 8-10 T in D). RF pulse lengths were typically 20-50 ms, ranging as high as 70 ms.

Significant heating was obtained for the hydrogen minority regime, with a rise in T of

up to 500 eV at 400 kW RF (Figure 1). These highest power shots often underwent an

electron density increase (typically from 1.2 to 1.9xI14" c1-3) as well as a rise in Zeff.

(typically from 1.5 to 2.5-3.0). Heating results from the hydrogen second harmonic regime

were ambiguous, with occasional rises in Ti of up to 100 eV for PR up to 200 kW.

During the ICRF experiments, T was measured from X-ray spectra and Thomson

scattering, ne (r) was monitored by a 4-chord FIR laser interferometer, and Zeff was de-

duced from visible bremsstrahlung emission. A neutral charge exchange (CX) analyzer

measured T; and monitored fast ion tail formation. A single Langinuir probe with variable

radial position was employed during some discharges to record the edge temperature and

density profiles, Teb(r) and neb(r). Soft X-ray emission (1-8 keV) was monitored by a PIN

diode array with Be filters, while the X-ray PHA spectra (10-50 keV) were obtained with

a HgI 2 detector.

A 2.2 meter grazing incidence time-resolving vacuum ultra-violet (VUV) spectrograph

monitored impurity line radiation. The instrument was converted from a McPherson model
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Figure 1. ICRF heating of H iinority ions (- 1.5-3.0%) in a D plasma.

Ppy ~ 380 kW. Shown are plasma current Ip, average density i- , ion temperature

of deuterium component T, brightness of Fe XXIII 132.87 A resonance line (a central

ionization state), soft X-ray emission (SXR, 1-8 KeV), and Zff. (The first four traces

appeared in reference [28].)
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247 monochromator by the installation of a detector similar to that described by Bell

et al. [30] and others [31,32], consisting of a microchannel plate image intensifier which

is coupled fiber-optically to a Reticon 1024-element linear photodiode array. When used

with a 600 line/mm grating, the spectrograph has a spectral range of 20-1160 A, with

simultaneous coverage of - 20 A when centered at 30 A and ~ 100 A when centered

at 1100 A. Spectral resolution is typically 0.3 A FWHM at the lower wavelengths. The

spectrograph sensitivity was absolutely calibrated [33] in the region 20-150 A with a mini-

focus e-beam soft X-ray source referenced to a proportional counter. Cross calibration at,

longer wavelengths was obtained through simultaneous comparisons of several impurity

resonance lines with an absolutely calibrated monochromator on Alcator C. Neither the

VUV spectrograph nor any of the other diagnostics was located at the toroidal position of

the ICRF antenna.

3. Impurity Influx During ICRF Heating

The overall plasma cleanliness, as measured by Zeff , deteriorated as PRF was raised.

The change in impurity content, AZeff , is plotted versus PRF in Figure 2, representing

a wide variety of plasma conditions. Although there is a fair amount of scatter in the

data, partially due to the variety of shots, Zeff clearly increases with increasing PRF . The

trend is shown more clearly by the increase with PRF of the iron source rate as derived

from spectroscopic measurements (see below). There is no clear dependence of AZeff on

resonance conditions or working gas, although all of the points with PRF > 250 kW are

from D plasmas with H minority. Pre-RF values of Zeff ranged from 1.1 to 2.2.

Figure 3 shows a typical VUV spectrum before and during a 380 kW ICRF heating

pulse. The large rise in metal impurity concentrations is exhibited by the brightness of the

Fe XXIII resonance line, 132.87 A, plotted versus time for the same discharge in Figure 1.

The behavior of the C-VI line, on the other hand, reveals the relatively small increase in

low-Z impurity levels during the ICRF pulse. Line brightnesses are obtained by fitting an

instrumental response function to each viewed line, such that the summation of individual

lines matches the observed spectrum.

The typical impurity content of the Alcator C plasmas before and during a series of

350-400 kW ICRF experiments in the hydrogen minority regime at BT _- 12 T was ana-

lyzed by comparing several measured line brightnesses from each major impurity element

to those simulated by an impurity transport code. The transport code takes a given impu-

rity source rate S, at the plasma edge and traces the evolution due to diffusion and atomic

processes (ionization, radiative and dielectronic recombination, and excitation). Emissivity

profiles and chordal brightnesses are calculated as a function of time for selected impurity

7



100

ICRF

200

Power

300

(kW)

Figure 2. Change in Zf during ICRF pulse vs. injected RF power.

8

1.5

1.0
'4-
'4-

N

0

Q)
0

0.5

0.0
0

A

A A

A
A
A
A

A
A

A A
A A A

A
A A

A A A A
A

Ak A A
A A A A

A& A

A hA" A
A AAAAA M

A A AMAAAA AA A
L A A AA" A A A
A AAA AA A A

I I '

400



1.9 Fe XXIII

1.4

0.91-

(C4

V-

0

-0.11-
11i

After ICRF

Befo re

M

ICRF

0 XXXII

C VI
7

V *
A AA

I I -~ I
-

120 130 140

WAVELENGTH (A)

Figure 3. Evolution of VUV emission, 110-150 A, during the discharge pre-
sented in Fig. 1, showing spectra taken before and just after the ICRF pulse. Impurity
lines shown are Mo XXXII (127.81 A), Fe XXIII (132.87 A), C VI (134.94 A and 33.74 A
in 4th order), and Cr XXI (149.90 A). The Cr XXI line is blended with 0 VI (150.1 A),
which is dominant before the ICRF pulse.

9

0.41-

Cr XXI

150



ion lines. The transport model used is based on impurity confinement times measured by
laser blow-off injection of trace impurities into purely ohmic discharges. Also using laser
blow-off injection, similar transport was found in ICRF heated discharges. This lack of
significant differences in impurity transport between ICRF heated and purely ohmic dis-
charges was also reported on TFR, along with the conclusion that the capture of injected
impurities from the scrape off layer to the region inside the limiter was unaffected by ICRF
heating, despite measured perturbations to the SOL plasma during the ICRF pulse [34].
Anomalous spreading diffusion is used to simulate impurity transport, with the flux given

by

I. = -D (1)
Or

where nj is the density of the j-th ionization state and D is an empirically determined,
spatially constant, impurity diffusion coefficient [35",

D(cm2 /sec) = 10 2 aIqI(Zb9/Zeff) (2)
Mbg

where ai is the minor radius (cm), qI is the safety factor at the limiter, and mbg and Zbg are
the mass and charge of the background gas in atomic units. Given the impurity transport,
the plasma temperature and density profiles, and the measured impurity emission, the
impurity concentration n,(r) and source rate S: are deduced.

Table I presents typical concentrations of the major impurities both before and just
after 350-400 kW ICRF pulses in the minority heating regime. Calculated contributions

to the central value of Zeff are also given; the total agrees well with the measured val-

ties deduced from visible bremsstrahlung. The modest fractional increases in carbon and

oxygen levels are dwarfed by the fractional increases in metallic impurities, especially iron.
and chromium (the main constituents of the stainless steel Faraday shield and walls). Iron

supplants carbon as the dominant non-hydrogen component of Zeff . The electron density

rose typically 40% during these highest power RF pulses; but this increase is not fully

due to the electrons from the increased impurity content. Total radiated power, estimated

using densities determined here and the calculations of Post et al. [36], increased by an

amount comparable to the injected RF power, with the largest, increase due to iron. The

fact that significant ion heating was observed during these shots (ATi ~ 500 eV, Figure

1), coupled with the observation that T remained approximately constant at ~ 2.1 keV,
indicates that this estimate of radiated power may be somewhat high. This is not sur-

prising, as the estimated uncertainty in radiated power is at least a factor of two, due to

uncertainties in impurity concentrations, assumptions of coronal equilibrium in Post et al.,
and limited knowledge of edge plasma profiles, including probable asymmetries.
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Table I

Impurity Concentrations* Before and After ICRF

350-400 kW, 50 msec pulse into D plasma with H minority

Pre-RF End of RF

Central Impurity Densities (cm- 3 )

Carbon 3.1 x 1012 3.6 x 1012

Oxygen 1.6 x 10" 3.0 x 1011
Chromium 1.1 x 1010 1.2 x 10"
Iron 3.5 x 1010 4.0 x 1011
Molybdenum 1.7 x 10 9  1.2 x 1010

Central (Zeff - 1) contributions

Carbon 0.42 0.36
Oxygen 0.04 0.06
Chromium 0.02 0.24
Iron 0.09 0.70
Molybdenum 0.01 0.05

Total

Total Zeff

Measured Zeff (vis. brems.)

0.58

1.58

1.6 ±0.2

1.41

2.41

2.4 ±0.3

Central Electron Density (10"4 cM- 3 ) 2.2 ± 0.4 3.0 ± 0.5

Total Radiated Power (kW) - 30 -350

Input Power (kW):
Ohmic -460 -640
ICRF 0 -350
Total -460 ~990

* Uncertainties in impurity concentrations are approximately ±50%

11



The transport code predicts that the brightness of Fe IX (171 A), an edge state,
should closely track the Fe influx rate, SFe, so that a sudden increase in the brightness

of this line implies that SFe has increased to a new steady state value. Such behavior is

indeed seen during a number of ICRF pulses (Figure 4), consistent with a rapid (2-5 ms)

increase in SFe coincident with the RF pulse. The temporal behavior of highly ionized Fe

lines (e.g. Fe XXIII, Figure 1) is generally also in agreement with this model. It must

be noted, however, that a more gradual rise in the Fe IX line is sometimes seen, perhaps

indicative of a self-sputtering contribution with its inherent positive feedback.

4. Sources of ICRF Generated Impurities

Metal impurity ions can be liberated from edge structures by the following mech-

anisms [37]: arcing, evaporation, flaking or blistering, and sputtering due to neutrals,

working gas ions, or impurity ions. Arcing within the antenna structure or between the

antenna and wall is judged to be unimportant in these experiments because: 1) the iron

influx appeared to be steady and reproducible during the RF pulse, unlike the erratic or

intermittent behavior characteristic of such arcing; 2) no threshold value of PRF was seen;

3) no clear difference in impurity production was seen between the top half-loop and the

bottom half-loop antennas; presumably eliminating arcing due to positioning errors; 4) the

circuits driving the RF antennas shut down rapidly in the event of an arc detection, as

manifested by sudden changes in the reflectivities. However, arcing may explain the few

shots in which the iron level rose anomalously rapidly, leading to a disruption. A small

melted spot found later at the base of one of the antenna sections is in fact attributed to

arcing. The possibility of many small unipolar arcs between the antenna structure and

the plasma sheath cannot be completely excluded. A steady production of such short-

lived arcs, yielding neutral impurity atoms with energy in the 100 eV range [38], might

produce the observed impurity influxes during ICRF heating. This phenomenon would

be undetected by the arc detector or other diagnostics. However, visual inspection with

a 10x-power eyepiece revealed no tiny pits or tracks, characteristic of such arcs, on the

antenna or Faraday shield.

Flaking and blistering are also deemed unlikely due to their erratic nature. Evapora-

tion is also considered an improbable explanation for the enhanced impurity influx during

the ICRF pulse. The erosion code discussed below predicts a negligibly small contribution

from this process, since the calculated heat load to the edge structures could only cause

major evaporation if, for some reason, it were very localized. Furthermore, evaporative

processes resulting from a constant flux of extra heat would have a steadily increasing yield

as the temperature of the structures involved rises towards the melting point. The time
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signature of the impurity rise on Alcator C, however, more closely resembled a sudden and

large incremental rise in impurity production, as discussed above.

The results presented here indicate that the most likely mechanism generating the

enhanced impurity influx is physical sputtering. Questions as to which structures (limiters,
antennas, or walls) are the main sources, and which particles (thermal or fast ions, impurity

ions, or neutrals) are doing most of the sputtering, and under what conditions this process

is most pronounced (scalings) are addressed below.

The limiter, being in close contact with the plasma, is always suspect when impurity

levels rise. Graphite limiters are known to become contaminated with surface deposits

of metals after a period of exposure to tokamak plasmas with metal impurities [4,39,40].
Subsequent to the ICRF experiments, a graphite block from one of the Alcator C limiters

was analyzed for surface composition via proton induced X-ray -emission (PIXE), using

4.5 MeV protons. The results, shown in Figure 5, revealed metal deposits with iron surface

concentrations as high as 2.4 x 1017 atoms/cm 2 , corresponding to an average thickness

of roughly 100 monolayers. Also detected were smaller concentrations of molybdenum,

chromium, nickel, and vanadium (believed to be an intrinsic impurity in the graphite).
The impurity deposition profiles are peaked at the sides of the limiter, with minima at

the center, where the plasma flux is tangent to the surface. This effect has been seen in

previous studies of other tokamak limiters [41].

The contaminated limiters are believed to be the dominant source of metal impurities

during the ohmic phase of the discharge. Results from the initial operations of JET

indicated that contaminated graphite limiters were in fact the dominant source of metal

impurities during ohmic discharges, even though Auger spectroscopy revealed the limiter

surface still to be - 90% carbon [42,43]. Although the metal concentrations observed on

the Alcator C limiters are sufficient to allow for the amount. of metallic impurity influx

seen during ICRF heating pulses, it is very difficult to reconcile the dramatic increase in

iron with the small change in carbon influx if the limiters are the source for both. No

reasonable combination of changes in T,(r = a) and ne(r = a) could produce this effect

in the erosion code simulations described below. This indicates that the main iron source

during the RF pulse was not the contaminated limiters, but some other structure (the

antenna Faraday shield, as seen below).

Still another argument concerns the presence of vanadium revealed by the PIXE

analysis of the limiter block surface (Figure 5). Believed to be an intrinsic impurity in the

graphite, it has a surface concentration only slightly less than that of nickel. While the

resonance lines of highly ionized nickel become clearly visible during the RF pulse, similar

lines from vanadium could not be detected. This implies that the limiters are not the main
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source of nickel (or iron, etc.) during the RF pulse. However, an alternative explanation

exists: since the PIXE analysis samples a layer a few microns thick, a relatively low

concentration of vanadium, distributed uniformly throughout the sampled volume, could

give the same signal as a high concentration of nickel, localized at the surface. In this

case, the nickel would be much more susceptible to surface erosion processes during the

RF pulse.

Other structures exposed to the edge plasma during these experiments include the

stainless steel antenna Faraday shield at r = 13.2 cm, stainless supports for the graphite

limiter blocks (exposed for r > 14.5 cm), secondary molybdenum limiters at 16.5 cm,
stainless virtual limiters at 18.0 cm, and the stainless bellows wall at 19.2 cm.

In order to gain insight into the impurity production mechanism, the scaling of the

iron influx with various plasma and RF parameters was studied. For a limited group of

similar discharges with comparable RF pulse lengths, the change in iron influx, A SFe,

may be taken to be proportional to the change in brightness, AB, of an iron line from

a non-central ionization state. However, the variety of plasma parameters employed in

these experiments led to such a broad range of temperature profiles, density profiles, and

transport conditions, that in general such a simple comparison of line brightnesses could be

misleading. The transport code was therefore run for each set of plasma parameters used

in order to arrive at a pre-RF value and an RF value for the iron influx in each discharge.

The change in influx,

_A Se = SRF _ Pre RFA Se 'F - F~e RF(3)

was then used to compare the impurity production due to ICRF power launched into

different discharges. By bringing in transport parameters, this approach introduces addi-

tional quantitative uncertainties which may mask subtle dependences. For this survey, the

following bright lines were used to deduce SFe: a) the Fe-XVI resonance line (3s - 3p) at

335.407 A, b) the Fe-XXIII resonance line (2s' -2s2p) at 132.87 A and the nearby Fe-XXII

line (2s 22p - 2s2p 2 ) at 135.78 A, and c) Fe-XXIV resonance line (2s - 2p) at 192.02 A.
Many other lines were viewed, of course, but these were chosen for the database study due

to the amount of data on each and the quality of the atomic data (oscillator strengths and

branching ratios) for the resonance lines.

The main conclusion of this survey is that the change in source rate during the

injection of RF power, ASpe, increases with PRF in a fashion that is approximately linear.

This is especially evident in Figure 6a, in which only data points from a restricted group

of shots with similar plasma parameters are plotted. In this case, as discussed above,

the trend would be clear from simply plotting AB for a given iron line. For the larger,
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unrestricted data set shown in Figure 6b, the values for a given PRF have been averaged,

and the error bars indicate statistical variations of the individual points. Within the

scatter, no clear dependence is seen on working gas, resonance conditions, or bulk plasma

properties (with the exception of ii-, at low densities, described below).

Absolute source rates are uncertain due primarily to uncertainties related to impurity

transport in the peripheral plasma (r > 0.75a). For example, increasing the diffusion

coefficient in this region by a factor of three leads to source rates -four times higher.

In addition, the presence of a non-zero inward convection term, V(r) = Vor/a, in the

impurity flux (Eqn. 1). can significantly influence the value of the deduced source rates.

An examination of predicted vs. measured brightnesses for emission lines from a range

of iron ionization states, each peaked at a different plasma radius due to the temperature

profile, yields information about the total iron density profile, nFe(r), which has a strong

dependence on V1,/D. From such an examination it was concluded that the assumption

Vo = 0, used in the calculations of source terms, was reasonable, and that an upper limit of

Vo < 2D/a could be established. Including this maximum value of V. in the transport code

yielded iron source terms approximately 2.5 times smaller than those for which Vo = 0.

Lines used for this profile study, and for calculating the average iron densities given in

Table 1, were Fe-IX (171 A), Fe-X (177 A), Fe-XII (364 A), Fe-XIII (368 A), Fe-XIV

(274 A), Fe-XV (284 A), Fe-XVI (336 A), Fe-XVIII (94 A), Fe-XIX (108 A), Fe-XX (122

A), Fe-XXI (142 A), Fe-XXII (136 A), Fe-XXIII (133 A), and Fe-XXIV (192 A). Hence,

the uncertainties in the absolute source rates are estimated to be ± a factor of 3. Despite

these uncertainties in the absolute rates, the relative changes are believed to be much more

reliable and should allow determination of the major trends.

There is no correlation of ASFe with the fast ion distribution as inferred from the

perpendicular neutral particle flux in the energy range .9 <- E < 10. keV due to CX. This

is the case whether or not the observed flux comes from the plasima edge or the plasma

center. In fact, the CX flux in this energy range typically decreases during ICRF injection.

Thus, it is inferred that the impurity production is unrelated to the presence of fast ion tail

formation or to a change in Ti due to ICRF heating. However, it must be emphasized that

the CX neutral analyzer did not detect particles with E < 900 eV, and it did not measure

parallel distributions. The flux below 2 keV comes predominantly from the outer plasma

region in Alcator C. Furthermore, the CX analyzer was not at the same toroidal location as

the ICRF antenna, and would therefore probably not detect any local production of fast,

promptly lost ions. However, if the increase in molybdenum (see Figure 3 and Table I)

results from erosion of the secondary molybdenum limiters at 16.5 cm, as suspected, then

localized erosion near the antenna would not be indicated.
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The lower half-loop antenna was installed first and operated alone for the first three

weeks. Upon the installation of the upper half-loop, the antennas were usually operated

together, with the RF power being split roughly equally between them. At times, however,

each half-loop was also operated individually. For all cases, the iron influx was approxi-

mately the same for a given total PRF , indicating no strong dependence on either antenna

poloidal extent or on the total exposed antenna area (activated or not). However, the

scatter in the data could mask the factor of 2 changes one might have expected.

Two conditions associated with elevated edge temperatures are correlated with en-

hanced impurity production: low density and low limiter safety factor, q. Below a threshold

value of -n- ~~ 1.8 x 10" cn', ASFe is seen to increase as i, decreases. The probable expla-

nation for this result involves the deterioration of energy confinement times on Alcator C

at lower values of ii (Alcator scaling) [44]. The edge temperature Tb generally increases

as I decreases past a certain value, which would lead to increased sputtering losses. This

mechanism has been suggested previously to explain high metal concentrations during low

density ohmic discharges on Alcator C [45]. Furthermore, ASFe is often higher for lower q

discharges with qj < 3.4, another condition associated with elevated edge temperatures.

Further corroboration of this effect is seen from the Langmuir probe data, which

yielded strong evidence for a prompt and large change in Teb(r) at the antenna radius

during the RF pulse (Figure 7).

The values of Teb deduced during the ICRF pulse may actually be regarded as a

lower limit on the electron temperature, as the probe I-V characteristic was limited by

the bias sweep voltage employed during these experiments. If there were, for example,

a fast electron component (Tb > 40 eV) present in addition to a slower component.,

the deduced temperature would correspond to the colder component of the distribution.

However, no clear evidence for such a tail was seen in these experiments. Also, more

recent measurements made by a gridded energy analyzer in the SOL during ICRF heating

experiments have shown the distributions of electrons and ions with energy E < 70 eV

to be well described by thermal distributions whose temperatures increase during the RF

pulse [46].

Only minor changes in neb(r) were seen. Plotted in Figure 8 are the iron source terms

before and during the RF pulse (Spre RF and SF) versus Teb at the antenna radius, for

a series of shots with PRF in the 50 kW range, showing a clear correlation. The increase,

if any, in Teb(r) at the limiter radius was less dramatic, leading to an effective increase in

the edge temperature scrape off length by a factor of three or more during the 350 kW

RF pulses. A similar flattening of the edge temperature profile has been reported at

TEXTOR [6] and at JET [5]. Since the Langmuir probe was located toroidally away
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from the antenna, this change in the edge plasma was not a local effect. Of course, the

perturbation may have been larger at the antenna port.

The above evidence strongly suggested that thermal sputtering of the Faraday shield

through a significantly increased sheath potential (4sh 3 Teb) was the dominant source of

iron, chromium, and nickel during the ICRF pulse. An increase in Tb from 6 eV to 20 eV

at the antenna, as shown in Figure 7, would cause the sputtering of iron by protons to

increase by an order of magnitude due to the sharp increase in sputtering coefficient with

increasing impact energy [37]. If for some reason a fast electron component is created in

the SOL during the RF pulse, corresponding to a higher temperature than that deduced

from the Langmuir probe data, then the sheath potential would undergo an even larger

increase. The more modest changes in the carbon and oxygen influx are ascribed to the

more modest increases in Tb at the limiter, again via thermal sputtering. Sputtering

contributions from the limiter supports and wall are estimated to be minor because they

are ~ 7 and 22 density scrape-off lengths behind the limiter, respectively. Coupled with the

observed lack of dependence on CX neutral flux, this tends to eliminate these structures

from consideration.

An observation from the current (1985-86) ICRF heating experiments on Alcator C

supports the identification of the Faraday shield as the primary metal source during ICRF

heating. Visible light emission from the antenna region was seen to increase during the

RF pulse, and in fact it closely tracked the time dependence of PRF . A filter transparent

to H, radiation cuts off this light, implying that it is not due to hydrogen or deuterium.

Rather, the emission is believed to be radiated from neutral or lightly ionized metal atoms

entering the plasma.

Sputtering yields are predicted to be roughly a factor of v2 higher for deuterium

than for hydrogen, an effect which is either not seen or obscured by the scatter in the data.

This scatter is attributed largely to small changes in the edge plasma parameters. The

Langmuir probe was available for only a few days during these experiments, so only limited

comparisons of impurity influx with edge parameters (such as in Figure 8) are possible.

5. Erosion code comparison

To quantitatively check the validity of the above conclusions, an edge erosion code

was used to calculate heating, evaporation/sublimation rates, and thermal sputtering rates.

Using edge plasma parameters and the physical properties of the exposed structural ma-

terials as input, the code yields calculated impurity source rates from both the limiter and

Faraday shield [47]. The overall sputtering yield includes thermal sputtering by bulk ions

(H or D) and self-consistent contributions from impurity ions. Edge profiles Teb(r) and
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nfeb(r) consistent with values measured by the Langmuir probe during a series of 350 kW

ICRF discharges were used in order to compare calculated iron and carbon source rates

with those inferred from the data in Table I. The edge temperature profile Teb(r) was

assumed to change rapidly from pre-RF to RF conditions. Edge ion temperatures, Tib(r),

were taken to be three times Teb(r), consistent with recent edge measurements on Alcator

C [46]. Note that for ion sputtering, the impact energy E - Tib + Z<Ih.

By adjusting the edge plasma parameters within the experimental uncertainties, ex-

cellent. qualitative and reasonable quantitative agreement could be obtained (Figure 9).

In this calculation, thermal sputtering by deuterons accounts for almost half the iron and

carbon influx, with the remainder due to impurity ion sputtering. The contributions from

evaporation and sublimation are much too small to explain the observed influxes. As stated

earlier, no conditions could be found to produce the observed influxes of both carbon and

iron solely from the contaminated graphite limiter.

While the agreement between the erosion code and the observed impurity behav-

ior strongly supports the conclusion that thermal sputtering is the dominant mechanism

generating the impurities, it cannot be construed as a proof which eliminates other possi-

ble mechanisms. There are significant uncertainties in the detailed plasma profiles in the

scrape off layer, as well as uncertainties in the impurity transport in the plasma periphery

(from r > .75a to the wall). It should be noted that the total power flux to the limiters can

be calculated from the edge profiles used in the erosion code. For the edge values giving the

reasonable match shown in Figure 9, the calculated power to the limiters is - 50% higher

than the total input power minus the radiated power. Edge values giving better agreement

in the scraped off power reduce the predicted source rates by factors of -2-3, but these are

still within the uncertainties of the source rates implied by the spectroscopic measurements

and transport analysis. In addition, the effects of possible toroidal or poloidal asymme-

tries in the edge are not included in the calculations. In particular, the temperature and

density near the antenna during the RF pulse might differ considerably from the values

recorded by the Langmuir probe and modeled in the erosion code. Hence the reasonably

good agreement. shown in Figure 9 gives significant credibility to the impurity production

model, but it can not be used to rule out those processes which are difficult to model, such

as unipolar arcing or sputtering due to reactive ERF fields.

6. Discussion

The picture which emerges from the above analysis is one of elevated edge tempera-

tures in the SOL during ICRF, which in turn lead to an enhanced impurity influx due to

physical sputtering through an elevated sheath potential. Because the relative increase in
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edge temperature is larger at the radius of the antenna than at the radius of the limiter, the

largest percent increase in impurity influx is that for the materials in the antenna shield

(chiefly iron, chromium, and nickel). This explanation of enhanced impurity production

in Alcator C during ICRF heating is consistent with both experimental evidence and re-

sults from other tokamaks. Thermal sputtering due to elevated Tb during ICRF was also

blamed for enhanced metallic impurity levels at T-10 [48] and at TFR [15-18], where the

results and conclusions are generally similar to those reported here for Alcator C. This

process is also blamed for enhanced sputtering of C and 0 from the graphite limiter of

JFT-2M. The rise in Teb is also seen in JIPP T-IIU. Although Tb was not reported to rise
on PLT, it is stated that noise on the probe signals could have prevented the detection of

such an effect.

However, this picture does not explain how the ICRF power changes the edge plasma.

The fact that both the impurity influx and Tb change quickly upon turning on the RF

power implies that the change is due to some direct heating of the edge plasma from

the antenna, rather than to increased energy flux out of the central plasma, (which often

showed little change in T or T anyway). This edge heating appears to be relatively

insensitive to how well the launched ICRF power propagated and was absorbed by the bulk

plasma, as evidenced by the lack of correlation with resonance conditions. Possible edge

heating processes include the damping of coaxial modes or surface waves [49], excitation

and damping of the slow wave in the SOL [22], or absorption at the lower hybrid resonance

layer, which occurs in the SOL at ni ; 1012 cm-' for these experiments. The scaling with

PRF may indicate that, some constant fraction of the launched ICRF power goes directly

into the edge plasma. To raise the temperature of the low density plasma in the SOL by

20 ev or so would require less than 2% of the 400 kW delivered to the antenna for the shots

with the highest power, assuming an energy confinement time of 0.5 nis in the SOL. The

possibility of a local maximum in Teb(r) at the radius of the antenna would require that

the power was absorbed in a fairly narrow radial zone. Indeed, some indication of such a

profile has been seen in the more recent Alcator C ICRF experiments [46].

Increased sputtering from CX neutrals was invoked by JIPP T-IIU workers to explain

increased 0 levels, and metal influx on JFT-2 during ICRF was correlated with fast ions in

the edge. At PLT, sputtering calculations showed that, an elevated efflux of both low energy

(E K; 1 keV) and fast neutrals, measured during ICRF, was sufficient to account for the

observed influx of iron from the stainless steel walls [2,12]. Highly energetic trapped ions,

detected in the SOL of PLT during ICRF [50], may also play a role. No such correlation

with fast ions or neutrals (E > 900 eV), was observed on Alcator C, although local effects

near the antenna cannot be completely dismissed. The lack of a low energy neutral analyzer
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prevented any such study of ions having E < 900 eV.

Sputtering of the antenna Faraday shield and walls due to the acceleration of ions

by the reactive ERF fields near the antenna was blamed for metallic impurity generation

at JFT-2M and Macrotor [511 during ICRF. To examine this possibility on Alcator C,
calculations based on the formulas of Itoh et al. [521 were performed to estimate the

impact energy with which ions accelerated by the fRF fields would strike the Faraday

shield. The electric field was estimated to be 5 1000 V/cm near the Faraday shield,
resulting in impact energies generally too small (E < 10 eV) to cause much sputtering.

An exception is the case of minority hydrogen ions in a magnetic field of B = 12 Tesla,
for which the fundamental cyclotron resonance layer of hydrogen occurs on axis. The lack

of observed dependence of impurity influx on magnetic field or working gas, coupled with

the low impact energy predicted under most conditions, indicates that this process is not

a dominant source of iron on Alcator C.

The occurrence of a large number of small unipolar arcs between the Faraday shield

and the plasma sheath, yielding an iron source which increases with PF , also cannot

be ruled out. However, the arc tracks would have had to be so small that they were not

identifiable upon visual inspection of the antenna. The Alcator C results are consistent

with the conclusion, also reached at PLT [10] and JIPP T-IIU [26], that the closest metal

surface to the plasma, if unprotected, will yield the largest metal impurity influx. Thus

the unprotected antenna Faraday shield on Alcator C is the probable dominant source of

iron, chromium, and nickel during ICRF despite metallic contamination of the graphite

limiter.

The use of graphite protective shields on the antenna surfaces which intercept mag-

netic flux lines, as employed at TFR and PLT, apparently minimizes the antenna con-

tribution to the metallic impurity influx. Good ICRF heating results at PRF <4.5 MW

have also been recently reported at JET [5,53] which uses graphite protective tiles around

the antenna in conjunction with carbonization of the walls to reduce metal impurity pro-

duction. Despite a flattening of the SOL profiles which yields a modest rise in the edge

temperature during ICRF heating and some increase in density near the wall, the level of

nickel (dominant metal impurity) in the plasma rises no faster than the total input power,

and does not play a dominant, role in the central power balance. The price for such success,

however, is substantial amounts of carbon in the plasma. Carbonization of the walls has

also been recently reported to be effective for the attainment of long-pulse (- 1 sec), high

power (- 2.25 MW) ICRF heating at TEXTOR with negligible metal influx [6]. Tests

with a movable steel plate indicated that metal erosion in the SOL was due to sputtering

by ions, perhaps involving a postulated suprathermal component. Prior to the carboniza-
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tion, the TEXTOR edge plasma and SOL were strongly perturbed by the ICRF pulse, and

impurity problems limited the RF pulse to 200 kW for 100 msec. Similar success using

wall carbonization to overcome enhanced impurity levels during ICRF heating has also

been recently reported at the diverted tokamak ASDEX (2.3 MW, 1 sec ICRF), [7].
The effects of ICRF heating on neb have varied from one experiment to the next.

These effects are generally attributed to changes in desorption and recycling at the wall and

may depend on details of the limiter-antenna-wall spacings. Neither large nor reproducible

effects were seen on Alcator C, where the distance from the wall to the front of the ICRF

antenna is - 6.0 cm, or - 20 times the density scrape-off length.

7. Summary

The following conclusions have been drawn from the analysis of spectroscopic and

other data taken during ICRF heating experiments on Alcator C:

(a)- Large increases in metallic impurity concentrations were observed (factor of - 12 for

400 kW RF). Smaller increases were seen in the light impurities (factor of ~ 1.2 for

carbon and - 1.9 for oxygen). Graphite limiters and stainless steel Faraday shields

were used during these experiments.

(b) The change in deduced iron influx, ASFe, increases approximately linearly with PF

for a variety of plasma and RF conditions.

(c) A prompt increase in Tb at the antenna radius is seen during the ICRF pulse. The

magnitude of this increase correlates well with ASFe.

(d) No correlation of ASFe is detected with working gas, plasma conditions, heating

mode, antenna area exposed or activated, bulk ion heating, ion tail formation, or fast

neutral particle flux.

(e) It is concluded that physical sputtering of the stainless steel antenna Faraday shield

due to an elevated sheath potential (sh z 3 Teb) is the primary source of metal-

lic impurities during ICRF heating on Alcator C. The same process, occurring at

the graphite limiter, is believed to be the dominant source of carbon and oxygen.

Modeling suggests that the sputtering is due both to working gas and impurity ions.

(f) These conclusions are consistent with calculated sputtering yields obtained from an

edge erosion code which utilized the measured changes in edge temperature profiles.

The code predicts negligible contributions from evaporation and sublimation, and

strongly discredits the possibility of the contaminated limiter being the dominant

source of metal impurities during ICRF.

To unravel further the effects of ICRF heating on impurity production, it is desirable

to monitor closely the edge plasma conditions, both globally and near the antenna struc-
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ture. An investigation into the possible mechanisms for direct deposition of RF energy into

the SOL plasma would also help antenna designers minimize this process, which appears

to be closely tied to impurity generation.
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