343 research outputs found

    Effect of pulsation rest phase duration on teat end congestion

    Get PDF
    peer-reviewedThe objective of this study was to quantify the effect of d-phase (rest phase) duration of pulsation on the teat canal cross-sectional area during the period of peak milk flow from bovine teats. A secondary objective was to test if the effect of d-phase duration on teat canal cross-sectional area was influenced by milking system vacuum level, milking phase (b-phase) duration, and liner overpressure. During the d-phase of the pulsation cycle, liner compression facilitates venous flow and removal of fluids accumulated in teat-end tissues. It was hypothesized that a short-duration d-phase would result in congestion of teat-end tissue and a corresponding reduction in the cross-sectional area of the teat canal. A quarter milking device, designed and built at the Milking Research and Instruction Laboratory at the University of Wisconsin–Madison, was used to implement an experiment to test this hypothesis. Pulsator rate and ratios were adjusted to achieve 7 levels of d-phase duration: 50, 100, 150, 175, 200, 250, and 300ms. These 7 d-phase durations were applied during one milking session and were repeated for 2 vacuum levels (40 and 50kPa), 2 milking phase durations (575 and 775ms), and 2 levels of liner overpressure (9.8 and 18kPa). We observed a significant reduction in the estimated cross-sectional area of the teat canal with d-phase durations of 50 and 100ms when compared with d-phase durations of 150, 175, 225, 250, and 300ms. No significant difference was found in the estimated cross-sectional area of the teat canal for d-phase durations from 150 to 300ms. No significant interaction was observed between the effect of d-phase and b-phase durations, vacuum level, or liner overpressure

    Maternal Cortisol Concentrations During Pregnancy and Sex-Specific Associations With Neonatal Amygdala Connectivity and Emerging Internalizing Behaviors

    Get PDF
    Background: Maternal cortisol during pregnancy has the potential to influence rapidly developing fetal brain systems that are commonly altered in neurodevelopmental and psychiatric disorders. Research examining maternal cortisol concentrations across pregnancy and offspring neurodevelopment proximal to birth is needed to advance understanding in this area and lead to insight into the etiology of these disorders. Methods: Participants were 70 adult women recruited during early pregnancy and their infants born after 34 weeks gestation. Maternal cortisol concentrations were assessed serially over 4 days in early, mid, and late gestation. Resting state functional connectivity magnetic resonance imaging of the neonatal amygdala was examined. Mothers reported on children's internalizing behavior problems at 24 months of age. Results: Maternal cortisol concentrations during pregnancy were significantly associated with neonatal amygdala connectivity in a sex-specific manner. Elevated maternal cortisol was associated with stronger amygdala connectivity to brain regions involved in sensory processing and integration, as well as the default mode network in girls, and with weaker connectivity to these brain regions in boys. Elevated maternal cortisol was associated with higher internalizing symptoms in girls only, and this association was mediated by stronger neonatal amygdala connectivity. Conclusions: Normative variation in maternal cortisol during pregnancy is associated with the coordinated functioning of the amygdala soon after birth in a sex-specific manner. The identified pathway from maternal cortisol to higher internalizing symptoms in girls via alterations in neonatal amygdala connectivity may be relevant for the etiology of sex differences in internalizing psychiatric disorders, which are more prevalent in women

    Maternal Systemic Interleukin-6 During Pregnancy Is Associated With Newborn Amygdala Phenotypes and Subsequent Behavior at 2 Years of Age

    Get PDF
    Background Maternal inflammation during pregnancy increases the risk for offspring psychiatric disorders and other adverse long-term health outcomes. The influence of inflammation on the developing fetal brain is hypothesized as one potential mechanism but has not been examined in humans. Methods Participants were adult women (N = 86) who were recruited during early pregnancy and whose offspring were born after 34 weeks’ gestation. A biological indicator of maternal inflammation (interleukin-6) that has been shown to influence fetal brain development in animal models was quantified serially in early, mid-, and late pregnancy. Structural and functional brain magnetic resonance imaging scans were acquired in neonates shortly after birth. Infants’ amygdalae were individually segmented for measures of volume and as seeds for resting state functional connectivity. At 24 months of age, children completed a snack delay task to assess impulse control. Results Higher average maternal interleukin-6 concentration during pregnancy was prospectively associated with larger right amygdala volume and stronger bilateral amygdala connectivity to brain regions involved in sensory processing and integration (fusiform, somatosensory cortex, and thalamus), salience detection (anterior insula), and learning and memory (caudate and parahippocampal gyrus). Larger newborn right amygdala volume and stronger left amygdala connectivity were in turn associated with lower impulse control at 24 months of age, and mediated the association between higher maternal interleukin-6 concentrations and lower impulse control. Conclusions These findings provide new evidence in humans linking maternal inflammation during pregnancy with newborn brain and emerging behavioral phenotypes relevant for psychiatric disorders. A better understanding of intrauterine conditions that influence offspring disease susceptibility is warranted to inform targeted early intervention and prevention efforts

    Estimating teat canal cross-sectional area to determine the effects of teat-end and mouthpiece chamber vacuum on teat congestion

    Get PDF
    peer-reviewedThe primary objective of this experiment was to assess the effect of mouthpiece chamber vacuum on teat-end congestion. The secondary objective was to assess the interactive effects of mouthpiece chamber vacuum with teat-end vacuum and pulsation setting on teat-end congestion. The influence of system vacuum, pulsation settings, mouthpiece chamber vacuum, and teat-end vacuum on teat-end congestion were tested in a 2 × 2 factorial design. The low-risk conditions for teat-end congestion (TEL) were 40 kPa system vacuum (Vs) and 400-ms pulsation b-phase. The high-risk conditions for teat-end congestion (TEH) were 49 kPa Vs and 700-ms b-phase. The low-risk condition for teat-barrel congestion (TBL) was created by venting the liner mouthpiece chamber to atmosphere. In the high-risk condition for teat-barrel congestion (TBH) the mouthpiece chamber was connected to short milk tube vacuum. Eight cows (32 quarters) were used in the experiment conducted during 0400 h milkings. All cows received all treatments over the entire experimental period. Teatcups were removed after 150 s for all treatments to standardize the exposure period. Calculated teat canal cross-sectional area (CA) was used to assess congestion of teat tissue. The main effect of the teat-end treatment was a reduction in CA of 9.9% between TEL and TEH conditions, for both levels of teat-barrel congestion risk. The main effect of the teat-barrel treatment was remarkably similar, with a decrease of 9.7% in CA between TBL and TBH conditions for both levels of teat-end congestion risk. No interaction between treatments was detected, hence the main effects are additive. The most aggressive of the 4 treatment combinations (TEH plus TBH) had a CA estimate 20% smaller than for the most gentle treatment combination (TEL plus TBL). The conditions designed to impair circulation in the teat barrel also had a deleterious effect on circulation at the teat end. This experiment highlights the importance of elevated mouthpiece chamber vacuum on teat-end congestion and resultant decreases in CA.Avon Dairy Solution

    Non-disjunction of chromosome 13

    Get PDF
    We performed a molecular study with 21 microsatellites on a sample of 82 trisomy 13 conceptuses, the largest number of cases studied to date. The parental origin was determined in every case and in 89% the extra chromosome 13 was of maternal origin with an almost equal number of maternal MI and MII errors. The latter finding is unique among human autosomal trisomies, where maternal MI (trisomies 15, 16, 21, 22) or MII (trisomy 18) errors dominate. Of the nine paternally derived cases five were of MII origin but none arose from MI errors. There was some evidence for elevated maternal age in cases with maternal meiotic origin for liveborn infants. Maternal and paternal ages were elevated in cases with paternal meiotic origin. This is in contrast to results from a similar study of non-disjunction of trisomy 21 where paternal but not maternal age was elevated. We find clear evidence for reduced recombination in both maternal MI and MII errors and the former is associated with a significant number of tetrads (33%) that are nullichiasmate, which do not appear to be a feature of normal chromosome 13 meiosis. This study supports the evidence for subtle chromosome-specific influences on the mechanisms that determine non-disjunction of human chromosomes, consistent with the diversity of findings for other trisomie

    Reconciliation Revisited: Handling Multiple Optima when Reconciling with Duplication, Transfer, and Loss

    Get PDF
    Phylogenetic tree reconciliation is a powerful approach for inferring evolutionary events like gene duplication, horizontal gene transfer, and gene loss, which are fundamental to our understanding of molecular evolution. While duplication–loss (DL) reconciliation leads to a unique maximum-parsimony solution, duplication-transfer-loss (DTL) reconciliation yields a multitude of optimal solutions, making it difficult to infer the true evolutionary history of the gene family. This problem is further exacerbated by the fact that different event cost assignments yield different sets of optimal reconciliations. Here, we present an effective, efficient, and scalable method for dealing with these fundamental problems in DTL reconciliation. Our approach works by sampling the space of optimal reconciliations uniformly at random and aggregating the results. We show that even gene trees with only a few dozen genes often have millions of optimal reconciliations and present an algorithm to efficiently sample the space of optimal reconciliations uniformly at random in O(mn[superscript 2]) time per sample, where m and n denote the number of genes and species, respectively. We use these samples to understand how different optimal reconciliations vary in their node mappings and event assignments and to investigate the impact of varying event costs. We apply our method to a biological dataset of approximately 4700 gene trees from 100 taxa and observe that 93% of event assignments and 73% of mappings remain consistent across different multiple optima. Our analysis represents the first systematic investigation of the space of optimal DTL reconciliations and has many important implications for the study of gene family evolution.National Science Foundation (U.S.) (CAREER Award 0644282)National Institutes of Health (U.S.) (Grant RC2 HG005639)National Science Foundation (U.S.). Assembling the Tree of Life (Program) (Grant 0936234
    corecore