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Abstract

Background: Maternal cortisol during pregnancy has the potential to influence rapidly 

developing fetal brain systems that are commonly altered in neurodevelopmental and psychiatric 

disorders. Research examining maternal cortisol concentrations across pregnancy and offspring 

neurodevelopment proximal to birth is needed to advance understanding in this area, and lead to 

insight into the etiology of these disorders.

Methods: Participants were N=70 adult women recruited in early pregnancy, and their infants 

born after 34-weeks gestation. Maternal cortisol concentrations were assessed serially over four 
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days in early, mid, and late gestation. Resting state functional connectivity MRI of the neonatal 

amygdala was examined. Mothers reported on children’s internalizing behavior problems at 24-

months-of-age.

Results: Maternal cortisol concentrations during pregnancy were significantly associated with 

neonatal amygdala connectivity in a sex specific manner. Elevated maternal cortisol was 

associated with stronger amygdala connectivity to brain regions involved in sensory processing 

and integration, as well as the default mode network in females, and with weaker connectivity to 

these brain regions in males. Elevated maternal cortisol was associated with higher internalizing 

symptoms in females only, and this association was mediated by stronger neonatal amygdala 

connectivity.

Conclusions: Normative variation in maternal cortisol during pregnancy is associated with the 

coordinated functioning of the amygdala soon after birth in a sex specific manner. The identified 

pathway from maternal cortisol to higher internalizing symptoms in females via alterations in 

neonatal amygdala connectivity may be relevant for the etiology of sex differences in internalizing 

psychiatric disorders, which are more prevalent in females.
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Introduction

Despite advancements in characterizing alterations in brain functioning underlying 

neurodevelopmental and psychiatric disorders, the disease burden and challenges of 

successful treatment remains high(1–4), highlighting the need to increase understanding of 

the etiology of these neural alterations and opportunities for prevention. Maternal 

glucocorticoids (GCs; cortisol in humans) during pregnancy are of particular interest in this 

regard due to their: (1) role as a common biomarker across multiple adverse prenatal 

conditions known to increase risk for offspring psychiatric disorders; (2) capacity to 

influence fetal GC exposure through multiple mechanisms; and (3) obligatory role in fetal 

brain development.

Cortisol, the end product of the hypothalamic-pituitary-adrenal (HPA) axis, plays a key role 

in the body’s response to psychological and physiological stress and maintenance of 

homeostasis(5). It is thus not surprising that cortisol production and bioavailability is altered 

in association with a range of adverse conditions (e.g. history of childhood maltreatment(6–

8), heightened psychosocial stress(9–12), and psychopathology(13, 14)), which may precede 

or occur during pregnancy, and are known to program offspring risk for neurodevelopmental 

and psychiatric disorders(15, 16). Maternal cortisol levels during pregnancy can influence 

fetal cortisol exposure both through stimulation of placental corticotropin-releasing hormone 

(CRH), which in turn stimulates fetal cortisol production(17–19), and through passage of 

maternal cortisol through the placenta. The placental enzyme 11β-hydroxysteroid 

dehydrogenase 2 (11β -HSD2) only forms a partial barrier to the passage of active 

cortisol(20), and can be down regulated in the context of adverse prenatal conditions(21, 22). 

Accordingly, positive correlations between maternal cortisol and cortisol in the fetal 
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compartment have been reported(23–25). The obligatory role of cortisol in the developing 

fetal brain and other organ systems is highlighted by the expression of GC receptors in most 

fetal tissue, and the necessity of these receptors for survival of the fetus(26). In the fetal 

brain, GCs play a role in multiple aspects of development, including neurogenesis, 

gliogenesis, synaptogenesis, and growth of axons and dendrites(27, 28).

The amygdala, which develops at an early embryonic stage(29) and contains a high 

concentration of GC receptors(30, 31), can alter its developmental trajectory in dependence 

of varying GC concentrations. Animal models provide experimental evidence for effects of 

heightened maternal GCs during pregnancy on amygdala development(32, 33), and 

associated elevations in stress reactivity and anxiety-like behaviors in offspring(32, 34–36). 

In humans, altered functioning of the amygdala is implicated in those behavioral phenotypes 

associated with elevated maternal cortisol concentrations during pregnancy or synthetic GC 

exposure, including heightened stress reactivity and negative emotionality(37–39), and 

higher levels of internalizing symptoms(40–42).

Animal models and research in humans have identified sex differences in the effects of 

elevated maternal GCs during pregnancy on offspring development(43, 44). Several studies 

in humans suggest that heightened negative emotionality and development of internalizing 

symptoms is more common in female offspring(40, 41, 45, 46). However, only one study has 

explicitly examined the role of the amygdala in the link between elevated maternal cortisol 

and risk for internalizing symptoms(40). This study identified an association between 

heightened maternal cortisol during pregnancy and larger right amygdala volume in school-

aged girls, and a pathway from higher maternal cortisol to greater internalizing in girls via 

this altered amygdala phenotype(40).

The scientific literature to date thus suggests a potentially important role for maternal 

cortisol during pregnancy in influencing offspring brain development with implications for 

subsequent internalizing behaviors, which may be more pronounced in females. The current 

study advances this line of work in several ways. First, prior studies in humans have 

examined maternal cortisol during pregnancy at a single time point during the day in relation 

to offspring brain development(40, 41, 47). In contrast, we employ ambulatory cortisol 

assessment over multiple days in early, mid, and late gestation, allowing for reliable and 

comprehensive estimation of overall maternal cortisol output during pregnancy. Second, 

while prior studies have examined brain development in school-aged children(40, 41, 47), 

the current study focuses on the neonatal brain, increasing capacity to differentiate effects of 

maternal cortisol concentrations during pregnancy from exposure to postnatal environmental 

stressors, as well as the influence of heightened offspring stress reactivity and internalizing 

over time.

Third, this study employs resting state functional connectivity MRI (rs-fcMRI) to examine 

the coordinated functioning of the neonatal amygdala with other brain regions. Rs-fcMRI 

reveals information about the functional architecture of the brain beginning in early infancy, 

and is sensitive enough to capture individual differences which relate to emerging behavioral 

phenotypes relevant for psychiatric disorders(48–51). We therefore examine maternal 

cortisol concentrations during pregnancy in relation to neonatal amygdala functional 
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connectivity. Based on prior research examining other stress related processes during 

pregnancy(49, 52) and stress exposure later in life(53–55), we expect to see altered 

amygdala functional connectivity to multiple brain regions involved in different sensory, 

emotional and cognitive functions. We will test associations between the identified patterns 

of neonatal amygdala connectivity and subsequent child internalizing behavior. We 

hypothesize that elevated maternal cortisol concentrations during pregnancy will be 

associated with neonatal amygdala connectivity and subsequent internalizing behaviors in a 

sex specific manner, such that they confer increased risk for internalizing behaviors in 

females.

Methods

Participants

Mothers and children in this study (N=70 with neonatal rs-fcMRI data and N=45 with 

behavioral data at 24-months-of-age) were part of an ongoing prospective, longitudinal 

study, conducted at the University of California, Irvine, for which mothers were recruited in 

early pregnancy. Exclusionary criteria were as follows: maternal age < 18 years; maternal 

use of psychotropic medications or systemic corticosteroids during pregnancy; infant birth 

before 34 weeks gestation; and infant congenital, genetic, or neurologic disorder. 

Demographic characteristics are presented in Table 1. A very small portion of mothers 

reported a mental health diagnosis at study entry (N=2). Behavioral follow-up data were 

obtained when children were 24-months-of-age (M=24.00 months, SD=.866). There were no 

significant differences in maternal cortisol concentrations or demographics for those lost to 

follow-up versus the sample with behavioral follow-up data. See Table S1 for a comparison 

of demographics for the full sample versus the follow-up sample. All procedures were 

approved by the Institutional Review Board at the University of California, Irvine, and 

written informed consent was obtained from all mothers.

Maternal Cortisol Concentrations

As described in our previous work(56) and in the Supplemental Materials, pregnant women 

collected saliva samples 5 times over the day for 4 consecutive days in early (T1), mid (T2), 

and late pregnancy (T3; see Table 2), resulting in 60 samples per woman across pregnancy 

(Figure S1). For each day, total cortisol output was estimated using area under the curve 

(AUC) with respect to ground. AUC values across days within each time point were 

significantly correlated (T1, r=.474 - .838, p< .001; T2, r=.630 - .800, p< .001; T3, r=.370 - .

700, p< .001), and were averaged to create a reliable indicator of cortisol output at each 

stage of pregnancy. These average AUC values were base 2 logarithm transformed to bring 

outliers closer to the mean and normalize the distributions. These values were also highly 

correlated (T1–T2 r=.664, p< .001; T1–T3 r = .649, p< .001; T2–T3 r= .743, p< .001), and 

were therefore averaged to create a composite representing overall cortisol output during 

pregnancy, which is the focus of analyses.

MRI and fMRI Data Acquisition and Processing

Data acquisition.—Neuroimaging data was collected at approximately 4 weeks-of-age 

(M=3.65, SD=1.72) during natural sleep on a TIM Trio, Siemens Medical System 3.0T 
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scanner. High resolution T2- (TR=3200ms, echo time=255ms, resolution=1×1×1mm, 4:18 

mins) and T1-weighted scans (MP-RAGE TR=2400ms, inversion time=1200ms, echo 

time=3.16ms, flip angle=8°, resolution=1×1×1mm, 6:18 mins) were collected. Functional 

images for resting state functional connectivity MRI (rs-fcMRI) were obtained using a 

gradient-echo, echoplanar imaging (EPI) sequence sensitive to blood oxygen level-

dependent contrast (TR=2000ms; TE=30ms; FOV=220×220×160mm; 195 TRs; 32 

interleaved-ascending axial slices; 1mm gap; resolution=3.4×3.4×4mm; flip angle=77°).

MRI and fMRI data preprocessing.—Processing followed established procedures for 

neuroimaging with neonates as described in our previous work(48, 49) and in the 

Supplemental Materials.

rs-fcMRI preprocessing.—Additional preprocessing steps for rs-fcMRI were 

implemented to account for signal stemming from non-neuronal processes (57–59) as 

described in the Supplemental Materials. Volume censoring was employed to reduce effects 

of motion determined by framewise displacement (FD)(60) of .3mm. Remaining mean FD 

was subsequently examined as a potential confound. As in our prior work(48, 49), seed 

regions for rs-fcMRI analysis were individually segmented amygdala (see Supplemental 

Materials).

Potential Confounds Relevant for Maternal Cortisol and Neonatal Brain Outcomes

Potential confounds relevant to maternal cortisol concentrations and infant brain 

development were examined. These included maternal pre-pregnancy body mass index 

(BMI), maternal cigarette smoking during pregnancy, obstetric (OB) risk, annual household 

income, and maternal systemic inflammation during pregnancy (as indexed by interleukin-6 

[IL-6]). See Supplemental Materials.

Internalizing Behavior at 24-months-of-age

Mothers reported on children’s internalizing behavior problems at 24-months-of-age on the 

Internalizing Behavior scale (α=.966) of the Child Behavior Checklist/1.5–5 (CBCL;(61)).

Maternal Postnatal Depression

The 20-item Center for Epidemiological Studies of Depression Scale (CESD;(62)) was used 

to assess maternal depression symptoms repeatedly over the first 2-years of life, and a 

composite score was used in analyses (see Supplemental Materials).

Analyses

The interaction between mean maternal cortisol AUC and fetal sex was regressed on whole-

brain amygdala voxelwise connectivity while adjusting for the main effects of mean 

maternal cortisol and infant sex, as well as infant gestational age at birth (GA) and age at 

scan. This whole-brain approach was deemed appropriate given our expectation that 

amygdala connectivity with multiple brain regions would be altered, and the lack of prior 

research examining amygdala connectivity in relation to maternal cortisol during pregnancy. 

Left and right amygdala connectivity were examined separately due to evidence for 

lateralized effects of prenatal influences(52) and asymmetry in relation to psychiatric 
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outcomes(63). Multiple comparisons correction for p< .05 voxel clusters required a 

threshold of 35 contiguous voxels with a Z value > 2.50 based on Monte Carlo 

simulation(89). Connections identified in the whole brain analyses were extracted (see 

Supplemental Methods for details). To probe the interaction, correlations between maternal 

cortisol and these connections were examined separately for females and males. Next, we 

tested for potential confounding influences on each extracted connection.

We then tested associations between the strongest results from the whole-brain analyses 

(based on Z value) and child internalizing behaviors at 24-months-of-age. A covariate for 

maternal postnatal depression was included to account for variation in the postnatal 

environment, and potential bias in maternal report on child internalizing. Next, we examined 

the direct association between maternal cortisol and child internalizing behaviors, 

considering infant sex as a moderator, and postnatal depression as a covariate. Finally, we 

planned to examine neonatal amygdala connectivity as a mediator of any identified 

association between maternal cortisol during pregnancy and child internalizing using a 

structural equation modeling framework Mplus, Version 7(64).

Results

The Association between Maternal Cortisol During Pregnancy and Neonatal Amygdala 
Connectivity is Moderated by Infant Sex

The interaction between maternal cortisol during pregnancy and infant sex was significantly 

associated with neonatal amygdala connectivity. For the right amygdala, the maternal 

cortisol – infant sex interaction was significantly associated with connectivity to the 

following regions: left supramarginal gyrus (SMG) and superior temporal gyrus (STG), and 

right inferior temporal gyrus (ITG; extending into fusiform gyrus) and dorsolateral 

prefrontal cortex (DLPFC). Results for the left amygdala were consistent with regard to the 

left SMG, right ITG, and a left STG region (although more rostral and less extensive). 

However, findings for the left amygdala also included the right and left precuneus and a 

more ventral and rostral fusiform gyrus region (Table 3 and Figure 1).

Probing the Interaction between Maternal Cortisol and Infant Sex Reveals Distinct Effects 
for Females versus Males

We extracted all significant connections identified in the whole-brain analysis (see 

Supplemental Materials) and examined the Pearson correlations between maternal cortisol 

and these connections separately for males versus females. Overall, for females, higher 

maternal cortisol was associated with stronger right and left amygdala connectivity to 

cortical brain regions. In contrast, for males, higher maternal cortisol was associated with 

weaker amygdala connectivity to these regions. Right amygdala-DLPFC and left amygdala-

fusiform gyrus connectivity were the two exceptions, such that higher maternal cortisol was 

associated with weaker connectivity in females, and stronger connectivity in males (Table 3). 

These results suggest a cross-over interaction, indicating that sex differences were not 

characterized by a stronger association for one sex compared to the other, but rather the 

associations between maternal cortisol and neonatal amygdala connectivity were opposite 

for females versus males.
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Potentially Confounding Factors Do Not Impact the Associations between Maternal 
Cortisol and Neonatal Amygdala Connectivity

The interaction between maternal cortisol during pregnancy and infant sex remained 

significantly associated with all of the identified connections (p< .05) after adjusting for all 

of the potential confounds, as well as remaining FD (micro-movements during functional 

data acquisition remaining after frame removal).

Neonatal Amygdala Phenotypes Associated with Maternal Cortisol during Pregnancy are 
Relevant for Child Internalizing Behavior

The strongest finding for the right amygdala (based on Z-value), amygdala-SMG 

connectivity, was positively associated with child internalizing behavior at 24-months-of-age 

(β= .336, p=.017). Infant sex was not a significant moderator (β= .058, p=.737). Of the 

covariates in the model, higher maternal postnatal depression was significantly associated 

with greater child internalizing (β=.408, p=.004).

The strongest finding for the left amygdala, left amygdala-ITG connectivity, was positively 

associated with child internalizing behavior only at the trend level (β=.252, p=.094). Infant 

sex was again not a significant moderator (β= −.190, p=.301), and the covariate for maternal 

depression was associated with child internalizing (β= .349, p=.018). Thus, patterns of 

neonatal amygdala connectivity associated with maternal cortisol during pregnancy are 

relevant for later emerging child internalizing symptoms. These associations are not 

modulated by infant sex, indicating that the moderation effect is specific to the association 

between maternal cortisol during pregnancy and the neonatal brain phenotypes.

The Association between Maternal Cortisol During Pregnancy and Child Internalizing 
Behavior is Moderated by Infant Sex

The interaction between maternal cortisol and infant sex was significantly associated with 

child internalizing (β= 1.527, p=.026). The covariate for maternal postnatal depression was 

also significantly associated with internalizing (β= .390, p=.010). Probing the interaction 

revealed that maternal cortisol was significantly associated with higher internalizing 

behaviors for females (β=.533, p=.013), but not for males (β= −.175, p=.358).

Neonatal Amygdala-SMG Connectivity Mediates the Association between Maternal Cortisol 
during Pregnancy and Subsequent Internalizing Behavior in a Sex Dependent Manner

Based on the significant effect of maternal cortisol on child internalizing, and the significant 

pathways from maternal cortisol to neonatal amygdala connectivity, and from amygdala-

SMG connectivity to internalizing, we tested for mediation. We used a moderated mediation 

model to account for the moderating effect of infant sex. For females, higher maternal 

cortisol was associated with higher child internalizing via stronger right-amygdala-SMG 

connectivity (indirect effect= 3.14 ; 95% CI: .198, 10.2; based on 5,000 bootstrap samples). 

Interestingly, the indirect path was also significant for males, such that higher maternal 

cortisol was associated with lower child internalizing via weaker right amygdala-SMG 

connectivity (indirect effect= −3.61; 95% CI: −10.3, −.645; based on 5,000 bootstrap 

samples). Thus for females, the direct effect of maternal cortisol during pregnancy on child 

internalizing is mediated by higher amygdala-SMG connectivity. In males, there was no 
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direct association between maternal cortisol and subsequent internalizing, but the significant 

mediation result suggests that heightened maternal cortisol during pregnancy is associated 

with lower internalizing behavior via this specific pathway involving amygdala-SMG 

connectivity. The lack of a direct effect for males indicates that other pathways exist through 

which heightened maternal cortisol has the opposite effect on internalizing behavior in 

males.

Discussion

Summary of Findings

Although extensively studied in animal models, the implications of variability in maternal 

cortisol concentrations during pregnancy for offspring brain and behavioral development in 

humans are not well understood. The findings of the current study indicate that normative 

variation in maternal cortisol concentrations during pregnancy are associated with alterations 

in neonatal amygdala functional connectivity to multiple cortical brain regions involved in 

sensory processing and integration, the default mode network (DMN), and emotion 

regulation. These associations differed by offspring sex, such that elevated maternal cortisol 

was associated with stronger neonatal amygdala connectivity in females, and weaker 

connectivity in males. The amygdala connections most strongly associated with maternal 

cortisol in turn predicted internalizing behavior when children were two-years-of-age, after 

accounting for maternal postnatal depressive symptoms. A significant direct effect of 

maternal cortisol during pregnancy on child internalizing was identified in females only. 

Stronger neonatal amygdala connectivity mediated the effect of elevated maternal cortisol on 

higher internalizing in females. We consider the potential implications of these findings for 

the etiology of sex differences in internalizing psychiatric disorders, which are more 

prevalent in females(65–68).

Potential Mechanisms Relevant to Observed Sex Differences

Research to date suggests several potential mechanisms, at the level of the placenta and fetal 

brain, through which maternal cortisol concentrations during pregnancy may exert sex 

specific effects on fetal neurodevelopment, and particularly brain regions such as the 

amygdala, with high potential to be influenced by GCs. The placenta is an organ of fetal 

origin, and therefore has the same X and Y chromosome composition as the fetus(69). Sex 

differences in placental gene expression and regulation, including of the placental enzyme 

11β-HSD2(70, 71) and placental GC receptor isoforms(72–75), affect both the passage of 

active maternal GCs to the fetal compartment and the extent to which maternal GCs 

stimulate fetal GC production. These mechanisms lead to sex differences in fetal GC 

exposure and associated phenotypic alterations in the context of elevated maternal GCs(44, 

70–77). Sex differences in the timing and pattern of GC receptor expression in the 

developing fetal brain have also been observed, and likely contribute to differences in how 

GC exposure shapes ongoing neural development(78–80).

Brain Regions and Networks Involved and Relation to Internalizing Symptoms

Results of the present study reveal a pattern of increased amygdala connectivity for females 

in association with elevated maternal cortisol concentrations. In adults, stronger amygdala 
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connectivity has been observed following stress exposure(53–55), and in association with 

higher subclinical and pathological internalizing symptoms(81–83). This finding is also in 

line with the limited prior research examining infant amygdala functional connectivity in 

relation to other indicators of prenatal adversity (heightened maternal systemic 

inflammation(49) and depressive symptoms(52)), suggesting that various forms of 

psychological stress and biological stress mediators during pregnancy may result in a neural 

phenotype of increased amygdala integration into early emerging functional brain 

architecture.

The findings for females specifically indicate stronger amygdala connectivity to brain 

regions involved in sensory processing and integration (SMG and STG), as well as the DMN 

(precuneus and ITG). Increased coordinated functioning of the amygdala with sensory 

processing and integration regions may be indicative of heightened sensitivity to sensory 

information, and has been observed in patients with subclinical and clinical anxiety(81, 84–

87), and disorders involving chronic pain(88, 89). Heightened functional connectivity of the 

amygdala with regions of the DMN has been observed in response to environmental stress 

(90) (91) and in association with internalizing disorders(92, 93). Interestingly, heightened 

maternal cortisol was also associated with females showing weaker functional connectivity 

of amygdala to DLPFC, a region involved in effectively regulating negative emotions(94). 

Taken together, the findings suggest a neural phenotype potentially indicative of increased 

sensitivity and vulnerability to experiencing heightened negative emotionality with 

decreased capacity for emotion regulation. This interpretation is supported by the 

association of stronger neonatal amygdala connectivity to the SMG, an important region for 

multimodal sensory integration(95–98), with higher subsequent internalizing behavior.

Males displayed the opposite pattern, such that amygdala connectivity to these sensory 

processing and integration regions, as well as the DMN, was weaker, and amygdala-DLPFC 

connectivity was stronger in association with heightened maternal cortisol. This neural 

phenotype could be indicative of decreased sensitivity to sensory stimuli and increased 

capacity for emotion regulation. Interestingly, prior research has indicated that alterations in 

the coordinated functioning of the amygdala associated with exposure to postnatal 

environmental stress may confer resilience to internalizing symptoms(99, 100). This may be 

the case for males in the context of exposure to heightened maternal cortisol during 

pregnancy as weaker neonatal amygdala-SMG connectivity was associated with lower 

internalizing symptoms at 2-years-of-age.

Stronger neonatal amygdala connectivity mediated the association between elevated 

maternal cortisol during pregnancy and higher internalizing symptoms in females. For 

males, there was no direct association between maternal cortisol and internalizing 

symptoms. However, the significant indirect effect of heightened maternal cortisol on 

internalizing behavior via altered amygdala-SMG connectivity suggests one potential 

pathway through which heightened cortisol could lead to lower internalizing behaviors in 

males. This finding is in line with a recent large study, which identified an association 

between heightened maternal cortisol during pregnancy and lower negative emotionality in 

male infants(45).
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These findings may suggest one early point of divergence in terms of later risk for 

internalizing psychiatric disorders, which are known to be more prevalent in females(65–68) 

beginning during puberty(101). Future research will be needed to examine whether these 

early sex specific alterations in brain connectivity and behavior increase sensitivity to the 

hormonal and social changes of puberty, or even relate to shifts in pubertal timing, which are 

in turn associated with heightened internalizing in females(102). It is important to note that 

while females are at greater risk of internalizing disorders, males are at greater risk for other 

psychiatric diagnoses, including autism, substance abuse, and externalizing disorders(65, 67, 

103). Ongoing research following brain and behavioral development across infancy and 

childhood will be needed to delineate such pathways of risk and resilience for males and 

females.

Limitations and Alternative Explanations for Findings

Several limitations of this study should be considered. First, cortisol does not act in isolation 

to influence the developing fetus. The endocrine system interacts with others, including the 

immune system, with potential to influence fetal neurodevelopment(49). While results of the 

current study remained consistent after adjusting for maternal systemic inflammation, we 

did not have sufficient statistical power to examine the interactive and cumulative influence 

of these systems, which will be a critical topic for future studies. With regard to genetic 

contributions to internalizing behavior, maternal stress during pregnancy has been found to 

be similarly associated with elevated child anxiety when mothers carry genetically related 

(via in vitro fertilization) or unrelated children (via in vitro fertilization with egg donation), 

suggesting a large environmental influence(104). Our analyses also adjust for maternal 

postnatal depression over a two-year period, making it unlikely that shared genetic 

vulnerability to internalizing symptoms explains these findings.

With regard to the neuroimaging results, although we hypothesized that maternal cortisol 

concentrations would be associated with altered neonatal amygdala connectivity to multiple 

brain regions spanning sensory, emotional, and cognitive functions, we did not set forth 

hypotheses about specific regions, and thus our interpretations regarding these connections 

are post-hoc. Similarly, the lateralized findings, including left SMG and STG, and right ITG 

and DLPFC, are consistent with prior research indicating asymmetry in effects of prenatal 

stress exposure on neurodevelopment(87), but were not specifically hypothesized. It should 

also be noted that neuroimaging with infants, by necessity, occurred during natural sleep. 

Ongoing investigation into the differences in coordinated brain functioning during infant 

sleep and wake cycles will likely aide in interpretation of findings moving forward. Lastly, 

the measure of child internalizing symptoms was based on maternal report, and could be 

improved by the addition of a diagnostic interview and observational assessment.

Conclusion

The findings of the present study provide support for the sensitivity of developing fetal 

limbic brain circuitry to variation in maternal cortisol during pregnancy in a normative 

sample of pregnant women. This work builds on prior research(40, 41, 45), and provides 

novel insight into a potential pathway through which prenatal conditions may lead to 

increased risk for internalizing symptomatology in females. More broadly, these findings 
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advance understanding of one key aspect of maternal stress biology during pregnancy in 

relation to offspring brain and behavioral development. This work can provide a foundation 

for subsequent investigations, including examination of the multitude of factors which may 

contribute to elevated maternal cortisol levels during gestation, and the longer term sequelae 

of the observed alterations in offspring amygdala connectivity and emerging internalizing 

behaviors.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The interaction between maternal cortisol during pregnancy and infant sex relates to 

neonatal amygdala connectivity

Note. SMG=supramarginal gyrus; STG=superior temporal gyrus; DLPFC=dorsolateral 

prefrontal cortex; ITG=inferior temporal gyrus. The association between maternal cortisol 

during pregnancy and whole brain left (Panel A) and right (Panel C) neonatal amygdala 

connectivity is moderated by infant sex (N=70). Panels A and C show brain regions for 

which connectivity of the neonatal amygdala is altered in relation to the interaction between 

maternal cortisol and infant sex. Scatter plots demonstrate an example of probing the 

maternal cortisol-infant sex interaction for a specific connection (left amygdala-ITG). For 

females (Panel B), maternal cortisol evidences a positive association with the strength of this 

connection (n=31, r= .490, p =.005). For males (Panel D), maternal cortisol evidences a 

negative association with the strength of this connection (n=39, r= −.342, p =.033). See 

Table 1 for direction and statistical significance of the bivariate correlations between 

maternal cortisol and each connection for males and females separately.
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Figure 2. 
Conceptual model representing sex-specific associations between maternal cortisol during 

pregnancy and offspring internalizing behaviors via neonatal amygdala connectivity

Note. The direct effect of maternal cortisol on child internalizing behavior was significant 

only for females. This model is based on the moderated mediation analysis, which identified 

significant indirect paths for females and males. Negative or positive sign indicates direction 

of effect for each association. Grey arrows represent mediation (indirect) effect. For females, 

higher maternal cortisol concentrations during pregnancy are associated with higher levels of 

internalizing behaviors at 24-months-of-age via stronger neonatal amygdala-SMG 

connectivity. For males, higher maternal cortisol during pregnancy is associated with lower 

levels of internalizing behaviors via weaker neonatal amygdala-SMG connectivity.
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Table 1.

Demographics (n = 70)

Characteristic Value

Maternal Age in First Trimester, Years 28.3 (5.40)

Infant Age, Weeks

Gestational Age at Birth, Weeks 39.30 (1.39)

Age at MRI Data Collection, Years 3.65 (1.72)

Infant Sex

Male 62.5

Female 37.5

Race/Ethnicity

Caucasian non-Hispanic 42.6

African American non-Hispanic 2.13

Asian non-Hispanic 10.6

Multiracial Non-Hispanic 10.6

Caucasian Hispanic 29.8

Asian Hispanic 2.13

Multiracial Hispanic 2.13

Highest Level of Maternal Education

High School or Test Equivalent 10.4

Vocational School or Some College 50.0

Associate Degree 4.20

Bachelor- or Graduate-Level Degree 35.5

Gross Annual Household Income

<$15,000 6.38

$15,000–$29,999 19.1

$30,000–$49,999 29.8

$50,000–$100,000 36.2

>$100,000 8.51

Values are mean (SD) or %.
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Table 2.

Mean (SD) of Maternal Cortisol AUC and Gestational Age at Each Collection

First Trimester Second Trimester Third Trimester

Gestational Age, Weeks 12.80 (1.77) 20.50 (1.40) 30.30 (1.26)

Cortisol AUC 2.93 (1.62) 3.25 (1.64) 4.11 (1.68)

Cortisol AUC was log transformed prior to analyses.

AUC, area under the curve.
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Table 3.

The Interaction Between Maternal Cortisol During Pregnancy and Infant Sex Is Prospectively Associated With 

Neonatal Amygdala Connectivity

Region Hem x y z Z Female Infants Male Infants

Right Amygdala

SMG L −56 −35 20 2.97 +c −a

L −51 −25 26 2.88 +a −c

STG L −48 −7 −7 2.85 +a −c

L −58 −4 −4 2.65 +a −c

ITG R 52 −17 −24 2.84 +b −c

DLPFC R 38 49 15 −2.67 −b +b

R 31 50 24 −2.50 − +c

Left Amygdala

ITG R 52 −7 −23 3.11 +c −b

Precuneus/superior parietal R 16 −54 55 3.05 +b −b

SMG L −52 −21 23 3.03 +c −b

Precuneus L −8 −59 32 2.92 +a −c

L −10 −49 51 2.79 +c −b

STG L −50 −24 4 2.69 +b −a

L −47 −14 −1 2.67 +c −

L −52 −37 15 2.60 +b −b

Fusiform gyrus R 40 −76 −15 −2.83 −b +b

Regions are in descending order based on highest Z value. The Pearson correlation between mean maternal gestational cortisol area under the curve 
and the extracted connection between the amygdala and each identified region was examined separately for female vs. male infants. The direction 
(positive or negative) and statistical significance of the correlation is indicated for female and male infants, respectively, in the last two columns.

DLPFC, dorsolateral prefrontal cortex; Hem, hemisphere; ITG, inferior temporal gyrus; L, left; R, right; SMG, supramarginal gyrus; STG, superior 
temporal gyrus.

a
p < .10.

b
p < .05.

c
p < .01.

Biol Psychiatry. Author manuscript; available in PMC 2020 January 15.

https://www.sciencedirect.com/topics/medicine-and-dentistry/hydrocortisone
https://www.sciencedirect.com/topics/medicine-and-dentistry/pregnancy
https://www.sciencedirect.com/topics/medicine-and-dentistry/sex
https://www.sciencedirect.com/topics/medicine-and-dentistry/amygdala
https://www.sciencedirect.com/topics/medicine-and-dentistry/dorsolateral-prefrontal-cortex
https://www.sciencedirect.com/topics/medicine-and-dentistry/hemisphere
https://www.sciencedirect.com/topics/medicine-and-dentistry/supramarginal-gyrus
https://www.sciencedirect.com/topics/medicine-and-dentistry/superior-temporal-gyrus
https://www.sciencedirect.com/topics/medicine-and-dentistry/superior-temporal-gyrus

	Abstract
	Introduction
	Methods
	Participants
	Maternal Cortisol Concentrations
	MRI and fMRI Data Acquisition and Processing
	Data acquisition.
	MRI and fMRI data preprocessing.
	rs-fcMRI preprocessing.

	Potential Confounds Relevant for Maternal Cortisol and Neonatal Brain Outcomes
	Internalizing Behavior at 24-months-of-age
	Maternal Postnatal Depression
	Analyses

	Results
	The Association between Maternal Cortisol During Pregnancy and Neonatal Amygdala Connectivity is Moderated by Infant Sex
	Probing the Interaction between Maternal Cortisol and Infant Sex Reveals Distinct Effects for Females versus Males
	Potentially Confounding Factors Do Not Impact the Associations between Maternal Cortisol and Neonatal Amygdala Connectivity
	Neonatal Amygdala Phenotypes Associated with Maternal Cortisol during Pregnancy are Relevant for Child Internalizing Behavior
	The Association between Maternal Cortisol During Pregnancy and Child Internalizing Behavior is Moderated by Infant Sex
	Neonatal Amygdala-SMG Connectivity Mediates the Association between Maternal Cortisol during Pregnancy and Subsequent Internalizing Behavior in a Sex Dependent Manner

	Discussion
	Summary of Findings
	Potential Mechanisms Relevant to Observed Sex Differences
	Brain Regions and Networks Involved and Relation to Internalizing Symptoms
	Limitations and Alternative Explanations for Findings
	Conclusion

	References
	Figure 1.
	Figure 2.
	Table 1.
	Table 2.
	Table 3.

