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ABSTRACT

Phylogenetic tree reconciliation is a powerful approach for inferring evolutionary events
like gene duplication, horizontal gene transfer, and gene loss, which are fundamental to our
understanding of molecular evolution. While duplication–loss (DL) reconciliation leads to a
unique maximum-parsimony solution, duplication-transfer-loss (DTL) reconciliation yields
a multitude of optimal solutions, making it difficult to infer the true evolutionary history of
the gene family. This problem is further exacerbated by the fact that different event cost
assignments yield different sets of optimal reconciliations. Here, we present an effective,
efficient, and scalable method for dealing with these fundamental problems in DTL rec-
onciliation. Our approach works by sampling the space of optimal reconciliations uniformly
at random and aggregating the results. We show that even gene trees with only a few dozen
genes often have millions of optimal reconciliations and present an algorithm to efficiently
sample the space of optimal reconciliations uniformly at random in O(mn2) time per sample,
where m and n denote the number of genes and species, respectively. We use these samples
to understand how different optimal reconciliations vary in their node mappings and event
assignments and to investigate the impact of varying event costs. We apply our method to a
biological dataset of approximately 4700 gene trees from 100 taxa and observe that 93% of
event assignments and 73% of mappings remain consistent across different multiple optima.
Our analysis represents the first systematic investigation of the space of optimal DTL rec-
onciliations and has many important implications for the study of gene family evolution.

Key words: gene duplication, gene family evolution, gene-tree/species-tree reconciliation,

horizontal gene transfer, host-parasite cophylogeny, phylogenetics.

1. INTRODUCTION

The systematic comparison of a gene tree with its species tree under a reconciliation framework is a

powerful technique for understanding gene family evolution. Specifically, gene tree/species tree re-

conciliation shows how the gene tree evolved inside the species tree while accounting for events like gene
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duplication, gene loss, and horizontal gene transfer, which drive gene family evolution. Thus, gene tree/

species tree reconciliation is widely used and has many important applications, for example, for inferring

orthologs, paralogs, and xenologs (Storm and Sonnhammer, 2002; Koonin, 2005; Wapinski et al., 2007; van

der Heijden et al., 2007; Vilella et al., 2009; Sennblad and Lagergren, 2009; Mi et al., 2010); reconstructing

ancestral gene content and dating gene birth (Chen et al., 2000; Ma et al., 2008; David and Alm, 2011),

accurate gene tree reconstruction (Vilella et al., 2009; Rasmussen and Kellis, 2011), and whole genome

species-tree reconstruction (Bansal et al., 2007; Burleigh et al., 2011).

Duplication–loss (DL) reconciliation, which accounts for only gene duplication and gene loss events, has

been widely studied and extensively used (Goodman et al., 1979; Page, 1994; Mirkin et al., 1995; Eu-

lenstein and Vingron, 1998; Bonizzoni et al., 2005; Durand et al., 2006; Górecki and Tiuryn, 2006; Chauve

et al., 2008). However, since it does not account for horizontal gene transfer events, it only applies to

multicellular eukaryotes, a very small part of the tree of life. An interesting and extremely useful property

of DL-reconciliation is that, assuming loss events have a nonzero positive cost, the most parsimonious

reconciliation is always unique (Górecki and Tiuryn, 2006). In addition, the most parsimonious recon-

ciliation remains the same irrespective of the chosen event costs for duplication and loss. Given these

properties, there is no ambiguity in interpreting the results of DL-reconciliation, which makes it extremely

easy to use in practice.

The limited applicability of DL reconciliation has led to the formulation of the duplication-transfer-loss

(DTL) reconciliation model, which can simultaneously account for duplication, transfer, and loss events and

can be applied to species and gene families from across the entire tree of life. Indeed, the DTL-reconciliation

model and its variants have been widely studied in the literature (Gorbunov and Liubetskii, 2009; Doyon

et al., 2010; Tofigh, 2009; Tofigh et al., 2011; David and Alm, 2011; Chen et al., 2012; Bansal et al., 2012;

Stolzer et al., 2012). In addition, DTL-reconciliation has also been indirectly studied in the context of the

host–parasite cophylogeny problem (Charleston, 1998; Ronquist, 2003; Merkle and Middendorf, 2005;

Libeskind-Hadas and Charleston, 2009; Merkle et al., 2010; Conow et al., 2010; Ovadia et al., 2011).

The DTL-reconciliation problem is typically solved in a parsimony framework, where costs are assigned

to duplication, transfer, and loss events, and the goal is to find a reconciliation with minimum total cost.

DTL-reconciliations can sometimes be time-inconsistent; that is the inferred transfers may induce con-

tradictory constraints on the dates for the internal nodes of the species tree. The problem of finding an

optimal time-consistent reconciliation is known to be NP-hard (Tofigh et al., 2011; Ovadia et al., 2011).

Thus, in practice, the goal is to find an optimal (but not necessarily time-consistent) DTL-reconciliation.

The problem of finding an optimal time-consistent reconciliation does become efficiently solvable

(Libeskind-Hadas and Charleston, 2009; Doyon et al., 2010) if the species tree is fully dated. However,

accurately dating the internal nodes of a species tree is a notoriously difficult problem (Rutschmann, 2006),

which severely restricts its applicability. Thus, for wider applicability and efficient solvability, in this work,

unless otherwise stated, we assume the input species tree is undated and seek an optimal (not necessarily

time-consistent) DTL-reconciliation (Tofigh et al., 2011; David and Alm, 2011; Chen et al., 2012; Bansal

et al., 2012). This problem can be solved very efficiently, with our own algorithm achieving the fastest

known time complexity of O(mn) (Bansal et al., 2012), where m and n denote the number of nodes in the

gene tree and species tree respectively.

Despite its extensive literature, the DTL-reconciliation problem remains difficult to use in practice for

understanding gene family evolution. The first reason for this difficulty is that there are often multiple equally

optimal reconciliations for a given gene tree and species tree and for a fixed assignment of event costs. The

second reason is that event costs, which can be very difficult to assign confidently, play a much more

important role than in DL reconciliation, as varying the costs can result in different optimal reconciliations.

Thus, when applying DTL-reconciliation in practice, it is unclear whether the evolutionary history implied

by a particular given optimal solution is meaningful, as many other optimal reconciliations exist with the

same minimal reconciliation cost. Moreover, it is unclear whether the properties of an optimal reconciliation

are representative of the space of optimal reconciliations, and also how large and diverse this space is.

Furthermore, the number of optimal reconciliations is often prohibitively large, as it can grow exponentially

in the number of events required for the reconciliation, making even the basic task of enumerating all optimal

reconciliations unfeasible for all but the smallest of gene trees (Chen et al., 2012). Here, we directly address

these problems and seek to make DTL-reconciliation as easy to use as the DL-reconciliation model.

It was recently shown that, when the species tree is fully dated, one can represent the set of all optimal

reconciliations in a compact way by building a polynomially-sized minimum reconciliation graph
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(Scornavacca et al., 2013). While this is an interesting approach to dealing with multiple optima, the fact

that this is only known to work when the species tree is fully dated severely limits its applicability in

practice. Moreover, since constructing the minimum reconciliation graph requires O(mn3) time and space

(Scornavacca et al., 2013), where m and n denote the number of nodes in the gene tree and species tree,

respectively, it can only be applied to small instances of the problem.

Our contribution. In this work, we develop an efficient and scalable approach to explore the space of

optimal DTL-reconciliations and show how it can be used to infer the similarities and differences in the

different optimal reconciliations for any given input instance. Our approach is based on uniformly random

sampling of optimal reconciliations, and we demonstrate the utility of our approach by applying it to a

biological dataset of approximately 4700 gene trees from 100 (predominantly prokaryotic) taxa (David and

Alm, 2011). Specifically, our contributions are as follows:

1. We analyze the gene trees in the biological dataset and show that even gene trees with only a few

dozen genes often have many millions of optimal reconciliations. This analysis provides the first

detailed look into the prevalence of optimal reconciliations in biological datasets.

2. We study some basic structural properties of optimal DTL-reconciliations, which shed light on the

inherent structure in optimal reconciliations and are both mathematically and biologically interesting.

3. We show how to efficiently sample the space of optimal reconciliations uniformly at random. Our

algorithm produces each random sample in O(mn2) time and requires only O(mn) space, where m and

n denote the number of nodes in the gene tree and species tree, respectively. This algorithm is fast

enough to be applied thousands of times to the same dataset and scalable enough to be applied to

datasets with hundreds or thousands of taxa.

4. We use our algorithm for random sampling to explore the space of optimal reconciliations and

investigate the similarities and differences between the different optimal reconciliations. We show

how to distinguish between the parts of the reconciliation that have high support from those that are

more variable across the different multiple optima.

5. We show that even in the presence of multiple optimal solutions, a large amount of shared infor-

mation can be extracted from the different optimal reconciliations. For instance, we observed that, for

fixed event costs, any internal node taken from a gene tree in the biological dataset had a 93.31%

chance of having the same event assignment (speciation, duplication, or transfer) and a 73.15%

chance of being mapped to the same species tree node, across all (sampled) optimal reconciliations.

6. Our method allows users to compare the space of optimal reconciliations for different event costs and

extract the shared aspects of the reconciliation. This makes it possible to study the impact of using

different event costs and to meaningfully apply DTL-reconciliation even if one is unsure of the exact

event costs to use. We applied our method to the biological dataset using different event costs and

observed that large parts of the reconciliation tend to be robust to event cost changes.

Thus, our new method allows for large-scale, systematic exploration of the space of optimal reconcil-

iations in real biological datasets and makes it possible to deal effectively with multiple optima by being

able to distinguish between the parts of the reconciliation that have high support and those that are more

variable across the different optimal reconciliations.

The remainder of the article is organized as follows: The next section introduces basic definitions and

preliminaries. In Section 3, we study the prevalence of multiple optimal reconciliations in biological data,

and in Section 4, the basic structural properties of optimal reconciliations. We introduce our sampling-

based approach and algorithms in Section 5. The results of our analysis of the multiple optimal recon-

ciliations for the biological dataset appear in Section 6, and in Section 7, we show how our method can be

applied to study the impact of using different reconciliation costs. Concluding remarks appear in Section 8.

2. DEFINITIONS AND PRELIMINARIES

We follow the basic definitions and notation from Bansal et al. (2012). Given a tree T, we denote its

node, edge, and leaf sets by V(T), E(T), and Le(T) respectively. If T is rooted, the root node of T is denoted

by rt(T), the parent of a node v 2 V(T) by paT (v), its set of children by ChT(v), and the (maximal) subtree

of T rooted at v by T(v). If two nodes in T have the same parent, they are called siblings. The set of internal

nodes of T, denoted I(T), is defined to be V(T)yLe(T). We define £ T to be the partial order on V(T) where
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x £ T y if y is a node on the path between rt(T) and x. The partial order ‡ T is defined analogously, that is,

x ‡ T y if x is a node on the path between rt(T) and y. We say that v is an ancestor of u, or that u is a

descendant of v, if u £ T v (note that, under this definition, every node is a descendant as well as an ancestor

of itself). We say that x and y are incomparable if neither u £ T v nor v £ T u. Given a nonempty subset

L 4 Le(T), we denote by lcaT(L) the least common ancestor (LCA) of all the leaves in L in tree T ; that is,

lcaT (L) is the unique smallest upper bound of L under £ T. Given x‚ y 2 V(T), x / T y denotes the unique

path from x to y in T. We denote by dT(x, y) the number of edges on the path x / T y. Throughout this work,

unless otherwise stated, the term ‘‘tree’’ refers to a rooted binary tree.

We assume that each leaf of the gene tree is labeled with the species from which that gene was sampled.

This labeling defines a leaf-mapping LG‚ S: Le(G) / Le(S) that maps a leaf node g 2 Le(G) to that unique

leaf node s 2 L(S), which has the same label as g. Note that gene trees may have more than one gene

sampled from the same species. Throughout this work, we denote the gene tree and species tree under

consideration by G and S respectively and will implicitly assume that LG‚ S(g) is well defined.

2.1. Reconciliation and DTL-scenarios

Reconciling a gene tree with a species tree involves mapping the gene tree into the species tree. Next, we

define what constitutes a valid reconciliation; specifically, we define a duplication-transfer-loss scenario

(DTL-scenario) (Tofigh et al., 2011; Bansal et al., 2012) for G and S that characterizes the mappings of G

into S that constitute a biologically valid reconciliation. Essentially, DTL-scenarios map each gene tree

node to a unique species tree node in a consistent way that respects the immediate temporal constraints

implied by the species tree and designates each gene tree node as representing either a speciation, dupli-

cation, or transfer event.

Definition 2.1 (DTL-scenario). A DTL-scenario for G and S is a seven-tuple ÆL‚M‚S‚D‚Y‚X‚ sæ,
where L: Le(G) / Le(S) represents the leaf-mapping from G to S‚ M : V(G)! V(S) maps each node of G

to a node of S, the sets S, D, and Y partition I(G) into speciation, duplication, and transfer nodes

respectively; X is a subset of gene tree edges that represent transfer edges, and s: Y/ V(S) specifies the

recipient species for each transfer event, subject to the following constraints:

1. If g 2 Le(G), then M(g) =L(g).
2. If g 2 I(G) and g0 and g† denote the children of g, then,

(a) M(g)mSM(g0) and M(g)mSM(g00),
(b) At least one of M(g0) and M(g00) is a descendant of M(g).

3. Given any edge (g‚ g0) 2 E(G), (g‚ g0) 2 X if and only if M(g) and M(g0) are incomparable.

4. If g 2 I(G) and g0 and g† denote the children of g, then,

(a) g 2 S only if M(g) = lca(M(g0)‚M(g00)) and M(g0) and M(g00) are incomparable,

(b) g 2 D only if M(g)qS lca(M(g0)‚M(g00)),
(c) g 2 Y if and only if either (g‚ g0) 2 X or (g‚ g00) 2 X.

(d) If g 2 Y and (g‚ g0) 2 X, then M(g) and s(g) must be incomparable, and M(g0) must be a

descendant of s(g), that is, M(g0)pS s(g).

Constraint 1 above ensures that the mapping M is consistent with the leaf-mapping L. Constraint 2(a)

imposes on M the temporal constraints implied by S. Constraint 2(b) implies that any internal node in G

may represent at most one transfer event. Constraint 3 determines the edges of G that are transfer edges.

Constraints 4(a), 4(b), and 4(c) state the conditions under which an internal node of G may represent a

speciation, duplication, and transfer respectively. Constraint 4(d) specifies which species may be designated

as the recipient species for any given transfer event.

In some cases, one may wish to restrict transfer events to only occur between coexisting species. This

requires that divergence time information (either absolute or relative) be available for all the internal nodes

of the species tree. In such cases, the definition of a DTL-scenario remains the same, except for the

additional restriction on transfer events.

DTL-scenarios correspond naturally to reconciliations, and it is straightforward to infer the reconciliation

of G and S implied by any DTL-scenario. Figure 1 shows two simple DTL-scenarios. Given a DTL-

scenario, one can directly count the minimum number of gene losses (Bansal et al., 2012) in the corre-

sponding reconciliation as follows.
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Definition 2.2 (Losses). Given a DTL-scenario a = ÆL‚M‚S‚D‚Y‚X‚ sæ for G and S, let g 2 V(G)
and {g0, g†} = Ch(g). The number of losses Lossa(g) at node g is defined to be:

�jdS(M(g)‚M(g0)) - 1j + jdS(M(g)‚M(g00)) - 1j‚ if g 2 S
�dS(M(g)‚M(g0))‚ if g 2 D and M(g) =M(g00).
�dS(M(g)‚M(g0)) + dS(M(g)‚M(g00))‚ if g 2 D, M(g) 6¼ M(g0)‚ and M(g) 6¼ M(g00), and
�dS(M(g)‚M(g00)) + dS(s(g)‚M(g0)) if (g‚ g0) 2 X.

We define the total number of losses in the reconciliation corresponding to the DTL-scenario a to be

Lossa =
P

g2I(G) Lossa(g).

Let PD, PY, and Ploss denote the costs associated with duplication, transfer, and loss events respectively.

The cost of reconciling G and S according to a DTL-scenario a is defined as follows.

Definition 2.3 (reconciliation cost of a DTL-scenario). Given a DTL-scenario a = ÆL‚M‚S‚D‚

Y‚X‚ sæ for G and S, the reconciliation cost associated with a is given by Ra = PD � jDj +
PY � jYj + Ploss � Lossa.

Given G and S, along with event costs PD, PY, and Ploss, the goal is to find a most parsimonious

reconciliation of G and S. More formally,

Problem 1 (most parsimonious reconciliation, or MPR). Given G and S, the most parsimonious

reconciliation (MPR) problem is to find a DTL-scenario for G and S with minimum reconciliation

cost.

We distinguish two versions of the MPR problem: (i) the undated MPR (U-MPR) problem in which the

species tree is undated, and (ii) the fully-dated MPR (D-MPR) problem in which every node of the species

tree has an associated divergence time estimate (or there is a known total order on the internal nodes of the

species tree), and transfer events are required to occur only between coexisting species.

Note that even if G and S are such that S contains one or more species that are not represented in G, we

keep the species tree as is (i.e., we do not trim S to match the species set of G).

3. MULTIPLE OPTIMAL SOLUTIONS

In general, for any fixed values of PD, PY, and Ploss, there may be multiple equally optimal solutions to

the MPR problem (both U-MPR and D-MPR). This is illustrated in Figure 1. The figure also illustrates the

fundamental problem with having multiple optima: Given the different evolutionary histories implied by

the different multiple optima, what is the true evolutionary history of the gene family? We address this

problem in this article. But first, in this section, we investigate the prevalence of optimal reconciliations in

real datasets. For our study, we use a published biological dataset of 4735 gene trees and 100 (predomi-

nantly prokaryotic) species (David and Alm, 2011). The gene trees in the dataset have median and average

a b

FIG. 1. Multiple optimal reconciliations. Parts (a) and (b) show two different reconciliations for the gene tree and

species tree depicted in the figure. Both of the reconciliations are optimal for event costs PD = 1, PY = 3, and Ploss = 1.

The reconciliation in part (a) invokes one duplication, one transfer, and two losses, while the reconciliation in part (b)

invokes two transfers.
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leaf-set sizes of 18 and 35.1, respectively. This dataset has been previously analyzed using DTL-recon-

ciliation but without consideration of multiple optima. In our analysis of this dataset we used the same

event costs as used by David and Alm (2011) (i.e., PD = 2, PY = 3, and Ploss = 1). Since the gene trees in

the dataset are unrooted, we first rooted them optimally by choosing a root that minimized the reconcili-

ation cost. In cases where there were multiple optimal rootings, we chose one of the optimal rootings at

random. We computed the number of multiple optimal reconciliations for each of the rooted gene trees by

augmenting the dynamic programming algorithm used to solve the MPR problem (e.g., Bansal et al. 2012)

to keep track of the number of optima for each subproblem. Further algorithmic details appear in Section 5.

Unless otherwise stated, all analyses in the manuscript were performed using the undated version of DTL-

reconciliation (i.e., the U-MPR problem).

Figure 2 shows the results of our analysis. As part (a) of the figure shows, only 17% of the

approximately 4700 gene trees have a unique optimal reconciliation. Over half of the gene trees have

over 100 optimal reconciliations and 15% have more than 10,000 optimal reconciliations. This il-

lustrates the extent of the problem with multiple optimal reconciliations in biological datasets. As part

(b) of the figure shows, the number of optimal reconciliations tends to increase exponentially with

gene tree size. These results demonstrate the importance of considering multiple optima in DTL-

reconciliation, and the impracticality of enumerating all optimal reconciliations for all but the smallest

gene trees.

We also repeated the above analysis using the dated version of the DTL-reconciliation problem (i.e., the

D-MPR problem), and observed no significant reduction in the number of multiple optima. For instance,

even for the dated version, 14% of the gene trees had more than 10,000 optimal reconciliations. To make

sure that the choice of event costs was not responsible for inflating the counts (since, in this case,

PY = PD + Ploss, potentially making it easier to trade off transfers for duplications and losses), we also tried

changing the event costs to 1.9, 2.9, and 0.9 for duplication, transfer, and loss, respectively, and observed

only a small reduction in the numbers of inferred optimal reconciliations. Specifically, we observed that

11.6% of the gene trees still had over 10,000 optimal reconciliations, and 7.6% still had over 100,000

optimal reconciliations.

Recall that the gene trees in the dataset were originally unrooted. While the results above are for a fixed

optimal rooting of these gene trees, we point out that about half the gene trees in the dataset have more

than one optimal rooting. It may thus be necessary, in practice, to either consider all possible optimal

rootings when studying multiple optimal reconciliations, or to use other information to assign a root

uniquely.

FIG. 2. Number of optimal reconciliations for gene trees in the biological dataset. The pie chart in part (a) shows the

distribution of the number of optimal reconciliations for the different gene trees in the biological dataset. The dot plot in

part (b) plots the size (in the number of internal nodes) and the number of optimal reconciliations for each gene tree.

Due to arithmetic overflow concerns, results are only shown for the 4699 (out of 4735) gene trees that had fewer than

1016 optima.
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4. BASIC STRUCTURAL PROPERTIES OF OPTIMAL RECONCILIATIONS

While there may be multiple optimal solutions for any given instance of the MPR problem, the gene

tree–species tree mappings in optimal reconciliations are, as we show, strongly constrained. The following

theorem applies to both the U-MPR and D-MPR problems.

Theorem 4.1. Let g be any node in I(G) and g0, g† be its two children. If loss events have a nonzero

positive cost, then any optimal solution for the MPR problem on G and S must satisfy the following

constraint: If g 2 S [ D then M(g) = lca(M(g0)‚M(g00)).

Proof. Let a denote any optimal reconciliation for G and S. Suppose, for the sake of contradiction, that

a does not satisfy the constraint of part (1). Then, under the mapping of a, G must contain a node

h ˛Sa WDa such that Ma(h) > S lca(Ma(h0)‚Ma(h00)), where {h0, h†} = Ch(h). Let a0 denote an alter-

native DTL-scenario obtained from a by changing the mapping of h to lca(Ma(h0)‚Ma(h00)). Clearly, a0 is a

valid DTL-scenario. We will show that a0 has a lower reconciliation cost than a, a contradiction.

If h 2 Sa, then the constraint follows immediately from the definition of DTL-scenarios. Thus,

assume that h 2 Da. Note that the number of transfers, duplications, and speciations is completely

identical for a and a0. Consequently, any difference in the reconciliation costs of a and a0 must be

purely due to different numbers of losses. Also observe that, if g 62 fh [ pa(h)g then Lossa(g) =
Lossa0(g). Let x =Ma(h) and y =Ma0 (h). Since h 2 Da, it follows from the definition of losses that

Lossa0(h) = Lossa(h) - 2 · d(x, y). It also follows that Lossa0( pa(h)) £ Lossa( pa(h)) + d(x,y), irre-

spective of whether pa(h) is a speciation, duplication, or transfer. Since d(x,y) ‡ 1, it follows that

Loss0a < Lossa, which implies that a0 has a lower reconciliation cost than a. This contradicts the initial

assumption that a is an optimal reconciliation. -

Similar observations were made by David and Alm (2011), who used the constraints on the mappings to

speed up their algorithm for the MPR problem. However, they did not provide any proofs and erroneously

assumed that the constraint on the mapping of speciation and duplication events also applies to transfer

events; that is, if g 2 Y and (g‚ g0) 2 X thenM(g) =M(g00)g. As Figure 3 demonstrates, this does not hold

true for transfer events.

5. UNIFORMLY RANDOM SAMPLING OF OPTIMAL RECONCILIATIONS

As Section 3 demonstrates, the exhaustive enumeration of all optimal reconciliation is only feasible

for very small gene trees. Indeed, as Figure 2 shows, even gene trees with only a few dozen taxa often

have hundreds of millions of solutions, and this number grows exponentially with gene tree size. In this

section, we show how to sample the space of reconciliations uniformly at random. Random sampling

makes it possible to explore the space of optimal reconciliations without exhaustive enumeration and

FIG. 3. Mappings from transfer events. Assuming that transfers, duplications, and losses have an equal cost, any

optimal reconciliation of G and S must have a cost of 2. The figure depicts two such optimal reconciliations, one in which

the transfer node maps to species A and one in which it maps to the species represented by lca(A,B). These two mappings

are shown by the dashed blue lines. All other nodes have identical mappings in the two reconciliations. Both reconcil-

iations have one loss and one transfer, and the reconciliation in which the transfer node maps to lca(A,B) shows that

transfer node mappings are not constrained in the manner of speciation or duplication nodes as shown in Theorem 4.1.
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makes it possible to understand the variability in the different reconciliations and to distinguish

between the highly supported and weakly supported parts of a given optimal reconciliation. Our

algorithm for random sampling is based on the dynamic programming algorithm for the MPR problem

from Bansal et al. (2012). The idea is to keep track of the number of optimal solutions for each

subproblem considered in the dynamic programming algorithm. In the following, we show how to

compute the number of optimal solutions at each step correctly and efficiently. First, we need a few

definitions.

Given any g 2 I(G) and s 2 V(S), let cS(g, s) denote the cost of an optimal reconciliation of G(g)

with S such that g maps to s and g 2 S. The terms cD(g, s) and cY(g, s) are defined similarly for g 2 D
and g 2 Y respectively. Given any g 2 V(G) and s 2 V(S), we define c(g, s) to be the cost of an

optimal reconciliation of G(g) with S such that g maps to s. The algorithm for the MPR problem

performs a nested post-order traversal of the gene tree and species tree to compute the value of

c(g, s) for each g and s. The dynamic programming table is initialized as follows for each

g 2 Le(G) : c(g‚ s) = 0 if s =M(g), and c(g, s) = N otherwise. For g 2 I(G), observe that c(g, s) =
min{cS(g,s), cD(g,s), cY(g,s)}.

At each step, the values of cS(g, s), cD(g, s), and cY(g, s) for any g 2 I(G) and s 2 V(S), can be

computed based on the previously computed values of c($,$). To show how cS(g, s), cD(g, s), and cY(g,s)

are computed, we need some additional notation. Let in(g‚ s) = minx2V(S(s))fPloss � dS(s‚ x) + c(g‚ x)g and

out(g‚ s) = minx2V(S) incomparable to s c(g‚ x). In other words: out(g, s) is the cost of an optimal reconciliation of

G(g) with S such that g may map to any node from V(S) that is incomparable to s; and in(g,s) is the cost of

an optimal reconciliation of G(g) with S such that g may map to any node, say x, in V(S(s)) but with an

additional reconciliation cost of one loss event for each edge on the path from s to x. The values cS(g,s),

cD(g, s), and cY(g, s) are computed as follows:

For any g 2 I(G) and s 2 I(S), let {g0, g†} = ChG(g) and {s0, s†} = ChS(s).

If s 2 Le(S) then,

cS(g, s) = N ,

cD(g, s) = PD + c(g0,s) + c(g†, s), and

if s s rt(S), then cY(g, s) = PY + min{in(g0, s) + out(g†, s), in(g†, s) + out(g0, s)}. Else, cY(g, s) = N.

If s 2 I(S), then

cS(g, s) = min{in(g0, s0) + in(g†, s†), in(g†,s0) + in(g0,s†)}.

cD(g‚ s) = PD + min

c(g0‚ s) + in(g00‚ s00) + Ploss‚

c(g0‚ s) + in(g00‚ s0) + Ploss‚

c(g00‚ s) + in(g0‚ s00) + Ploss‚

c(g00‚ s) + in(g0‚ s0) + Ploss‚

c(g0‚ s) + c(g00‚ s)‚
in(g0‚ s0) + in(g00‚ s00) + 2Ploss‚

in(g0‚ s00) + in(g00‚ s0) + 2Ploss‚

in(g0‚ s0) + in(g00‚ s0) + 2Ploss‚

in(g0‚ s00) + in(g00‚ s00) + 2Ploss:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

If s s rt(S), then cY(g, s) = PY + min{in(g0, s) + out(g†, s), in(g†, s) + out(g0, s)}. Else, cY(g, s) = N.

The optimal reconciliation cost of G and S is simply: mins2V(S) c(rt(G)‚ s), and an optimal reconciliation

with that cost can be reconstructed by backtracking in the dynamic programming table. We refer the reader

to Bansal et al. (2012) for further algorithmic details.

5.1. Computing the number of optimal reconciliations

To output optimal reconciliations uniformly at random we must keep track of the number of optimal

reconciliations for each of the subproblems considered in the dynamic programming algorithm. We define

the following: For any g 2 V(G) and s 2 V(S), let N(g, s) denote the number of optimal solutions for

reconciling G(g) with S such that g maps to s. The idea is to compute N($,$) using the same nested post-

order traversal used to compute the c($,$) values. The dynamic programming table for N($,$) is initialized

as follows for each g 2 Le(G):
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N(g‚ s) =
1 if g 2 Le(G) and s =L(g)‚

0 if g 2 Le(G) and s 6¼ L(g):

8<
:

To compute N(g, s), for g 2 I(G), we must consider all possible mappings of g0 and g† that yield a cost of

c(g, s). In the interest of brevity and clarity, let us assume that s 2 I(S) and s s rt(S); the cases when

s 2 Le(S) or s = rt(S) are easy to handle analogously.

Let a1 through a13 denote the individual expressions in the min{ } blocks in the equations for cS(g, s),

cD(g, s), and cY(g, s) above. Specifically, let a1 denote in(g0, s0) + in(g†, s†), a2 denote in(g†, s0) + in(g0, s†),

a3 through a11 denote the nine expressions in the min{ } block for cD(g, s), and a12 and a13 denote the two

expressions in the min{ } block for cY(g, s). Each of these ais represents a certain cost, which we denote by

c(ai), and a certain number of optimal reconciliations, which we denote by N(ai). Furthermore, let bi, for

1 £ i £ 13, be binary boolean variables associated with the ais such that bi = 1 if ai yields the minimum

cost c(g,s), and bi = 0 otherwise. Specifically, for i 2 f1‚ 2g, bi = 1 if and only if c(ai) = c(g, s); for

i 2 f3‚ . . .‚ 11g, bi = 1 if and only if c(ai) + PD = c(g, s); and for i 2 f12‚ 13g‚ bi = 1 if and only if

c(ai) + PY = c(g,s). Then, we must have:

N(g‚ s) =
X13

i = 1

bi · N(ai): (1)

Next, we show how to compute N(ai) for any i. Observe that each ai has one term involving g0 and one

term involving g†. These terms take one of the three forms: c($,$), in($,$), or out($,$). These terms,

involving g0 and g†, can be viewed as representing the choice of optimal mappings for g0 and g†, re-

spectively. For instance, c(g0, s) implies that g0 must map to s, in(g0, s) implies that g0 may map to any node

x 2 V(S(s)) for which (Ploss $ dS(s,x) + c(g0,x)) is minimized (recall the definition of in($,$)), and out(g0,s)

implies that g0 may map to any node x 2 V(S) that is incomparable to s, for which c(g0,x) is minimized.

Based on this observation, for any given ai, we can compute a set of optimal mappings for g0, which we will

denote by X0 and a set of optimal mappings for g†, which we will denote by X†. It is not hard to see that the

value of N(ai) must be as follows:

N(ai) =
�X

x2X0
N(g0‚ x

��
·
�X

x2X00
N
�

g00‚ x
��
: (2)

Note that, for deriving the expression of N(g,s) above, we have assumed that s 2 I(S)nrt(S); this is

because the expression for at least one of cS(g, s), cD(g, s), or cY(g, s) changes when s 2 Le(S) or s = rt(S).
The expressions for N(g, s), for s 2 Le(S), and s = rt(S) can be derived similarly by simply accounting for

these minor differences in the number of terms that constitute the sum on the R.H.S. of Equation 1.

Specifically, when s 2 Le(S), the terms cS(g, s), cD(g, s), and cY(g, s) contribute 0, 1, and 2 ais, respectively.

Thus, in this case, there are only three ais: a1 denotes c(g0, s) + c(g†, s), a2 denotes in(g0, s) + out(g†, s), and

a3 denotes in(g†, s) + out(g0, s).

Similarly, when s = rt(S), the terms cS(g, s) and cD(g, s) contribute, as before, 2 and 9 ais, respectively,

while cY(g, s) contributes none; this yields eleven ais, a1‚ . . .‚ a11, that are identical to the first eleven ais

used in Equation 1. Thus, the analogues of Equation 1 for the two cases when s 2 Le(S) and s = rt(S) are,

respectively:

N(g‚ s) =
X3

i = 1

bi · N(ai)‚ and (3)

N(g‚ s) =
X11

i = 1

bi · N(ai): (4)

The equations for N(g, s) and N(ai) derived above make it possible to compute the value N(g, s) for each

g 2 I(G) and s 2 V(S) by using the same nested post-order traversal that is used for computing the values

c($,$). For completeness, a detailed description of the algorithm is given below as Procedure Compute-

NumSolutions.
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Procedure ComputeNumSolutions(G, S, L, PS, PD, PY)

1: for each g 2 V(G) and s 2 V(S) do

2: Initialize c(g, s), cS(g, s), cD(g, s), and cY(g, s) to N, and N(g, s) to 0.

3: for each g 2 Le(G) do

4: Initialize c(g, L (g)) to 0, and N(g, L (g)) to 1.

5: for each g 2 I(G) in post-order do

6: for each s 2 V(S) in post-order do

7: Let {g0, g†} = ChG(g).

8: if s 2 Le(S) then

9: cS(g, s) = N.

10: cD(g, s) = PD + c(g0, s) + c(g†, s).

11: cY(g, s) = PY + min{in(g0, s) + out(g†, s), in(g†, s) + out(g0, s)}.

12: c(g, s) = min{cS(g, s), cD(g, s), cY(g, s)}.

13: Assign the three ai expressions as described earlier (for the case when s 2 Le(S)) and, for each i 2 f1‚ 2‚ 3g,
compute N(ai) using Equation 2.

14: Compute N(g, s) using Equation 3.

15: else

16: Let {s0, s†} = ChS(s).

17: cS(g, s) = min{in(g0, s0) + in(g†, s†), in(g†, s0) + in(g0, s†)}.

18: cD(g‚ s) = PD + min

c(g0‚ s) + in(g00‚ s00) + Ploss‚

c(g0‚ s) + in(g00‚ s0) + Ploss‚

c(g00‚ s) + in(g0‚ s00) + Ploss‚

c(g00‚ s) + in(g0‚ s0) + Ploss‚

c(g0‚ s) + c(g00‚ s)‚
in(g0‚ s0) + in(g00‚ s00) + 2Ploss‚

in(g0‚ s00) + in(g00‚ s0) + 2Ploss‚

in(g0‚ s0) + in(g00‚ s0) + 2Ploss‚

in(g0‚ s00) + in(g00‚ s00) + 2Ploss:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

19: If s s rt(S), then cY(g, s) = PY + min{in(g0, s) + out(g†, s), in(g†, s) + out(g0, s)}.

20: c(g, s) = min{cS(g, s), cD(g, s), cY(g, s)}.

21: if s s rt(S) then

22: Assign the thirteen ai expressions as described earlier (for the case when s 2 I(S)nrt(S)) and compute

N(ai), for each i 2 f1‚ . . . ‚ 13g, using Equation 2.

23: Compute N(g, s) using Equation 1.

24: if s = rt(S) then

25: Assign the eleven ai expressions as described earlier (for the case when s = rt(S)) and compute N(ai), for

each i 2 f1‚ . . . ‚ 11g, using Equation 2.

26: Compute N(g, s) using Equation 4.

Let m and n denote the number of leaf nodes in G and S, respectively. We have the following:

Theorem 5.1. Given G and S, and fixed event costs PD, PY, and Ploss, the value N(g, s) for each

g 2 V(G) and s 2 V(S) can be computed in O(mn2) time.

Proof. From Bansal et al. (2012) we already know that Procedure ComputeNumSolutions correctly

computes each c($,$). We will show that Procedure ComputeNumSolutions correctly computes each N($,$)

in O(mn2) time. -

Correctness: Observe that the value of N(g,s) is initialized correctly for each g 2 Le(G) in the ‘‘for’’

loops of Steps 1 and 3. Let g be any node in I(G) and let {g0, g†} = ChG(g). Let us assume that the values

N(g0, x) and N(g†, x) have been computed correctly for each x 2 V(S). We will show that the value of

N(g, s), for any s 2 V(S), is computed correctly as well.

For some fixed g and s, consider any ai for which bi = 1 in the equation used to compute N(g,s)

(i.e., in Eqs 1, 3, or 4). Let X0 and X† be as defined for Equation 2, for this chosen ai. By definition,
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any mapping from g0 to a node in x0 and from g† to a node in X† yields an optimal solution with

cost c(g,s) for the subproblem associated with the value N(g,s). Thus, the mapping of g0 represents

exactly
P

x2X0 N(g0‚ x) optimal reconciliations for the subproblem, while the mapping of g† represents

exactly
P

x2X00 N(g00‚ x). Since the mappings of g0 and g† can be assigned independently (for any fixed

ai), the total number of optimal reconciliations for the subproblem must be exactly as given by

Equation 2.

To complete the proof we must now also show the correctness of Equation 1 (the correctness of Eqs. 3

and 4 will follow trivially). It suffices to show that the terms chosen as part of the sum in the R.H.S. of

Equation 1 (i.e., for which bi = 1) represent pairwise disjoint sets of reconciliations. Observe that the

expressions for a3 through a7 and for a10 through a13 each represent a set of reconciliations that does not

overlap with any other ai (due to different constraints on the mappings for at least one of g0 or g†).

However, the expression for a1 matches the expression for a8, both of which restrict the mapping of g0 as

in(g0, s0) and the mapping of g† as in(g†, s†), and the expression for a2 matches the expression for a9, both of

which restrict the mapping of g0 as in(g0, s†) and the mapping of g† as in(g†, s0). However, since the terms a1

and a2 represent speciation while the terms a8 and a9 represent duplication, the lowest reconciliation costs

for scenarios a1 and a2 will always be less than the lowest reconciliation costs for scenarios a8 and a9

(assuming that duplication and/or loss events have non zero positive costs). This implies that neither b8 nor

b9 can ever be 1. Thus, the terms chosen as part of the sum in the R.H.S. of Equation 1 (i.e., for which

bi = 1) must all represent pairwise disjoint sets of reconciliations.

Induction completes the proof.

Complexity: We analyze the complexity of Procedure ComputeNumSolutions step-by-step. The ‘‘for’’

loops from Steps 1 through 4 require O(mn) time. Steps 7 through 26 each require at most O(n) time and are

each executed O(mn) times (through the ‘‘for’’ loops at lines 5 and 6), yielding a total time complexity of

O(mn2) for these steps. The total time complexity of Procedure ComputeNumSolutions is thus O(mn2). -

Corollary 5.1. Given G and S, and fixed event costs PD, PY, and Ploss, the total number of optimal

reconciliations of G and S can be computed in O(mn2) time.

Proof. Let l denote the minimum reconciliation cost of G and S, and let Y denote the set

fs 2 V(S) : c(rt(G)‚ s) = lg. Then, the total number of optimal reconciliations of G and S is simplyP
s2Y N(rt(G)‚ s). Since all c($,$) and all N($,$) can be computed in O(mn2) time by Procedure Compu-

teNumSolutions (Theorem 5.1), the corollary follows. -

Remarks. (1) Note that the total number of optimal reconciliations can grow exponentially as a function

of gene tree and species tree size. Throughout this work, however, when analyzing the time/space com-

plexity of our algorithm, we make the assumption that the values N($,$) can each be stored in some

constant-sized memory block. (2) It is worth observing that the approach described above also makes it

possible to compute the number of optimal reconciliations when the species tree is dated or, more gen-

erally, when constraints are imposed on the mappings or event assignments for some subset of the nodes of

the gene tree.

5.2. Sampling optimal reconciliations uniformly at random

Once all the c($,$) and N($,$) have been computed, an optimal reconciliation itself can be built by

backtracking through the dynamic programming table. To ensure that reconciliations are generated uni-

formly at random, the idea is to make the choice of mapping assignments based on the number of optimal

solutions contained within each choice. For instance, if a node g has already been assigned a mapping, its

two children g0 and g† must be assigned mappings jointly based on their joint probability mass.

In general, to output a reconciliation we must assign a mapping and an event (speciation, duplication, or

transfer) to each node of G (see Definition 2.1). (Technically, we are also required to assign the transfer

edges, but this is trivially accomplished once the mapping and event assignments are in place.) To ensure

that the output reconciliation is sampled uniformly at random from the space of all optima, we generate this

mapping and event assignment as shown in Procedure RandomOptimalReconciliation below. This algo-

rithm assumes that Procedure ComputeNumSolutions has already been executed. Let l denote the minimum

reconciliation cost of G and S.
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Procedure RandomOptimalReconciliation

1: for each g 2 I(G) in a pre-order traversal of G do

2: if g = rt(G) then

3: Let P denote the set fs 2 V(S) : c(rt(G)‚ s) = lg.
4: For any s 2 P, assign the mapping M(g) to be s with probability N(g‚ s)P

x2P
N(g‚ x)

.

5: Let {g0, g†} = ChG(g).

6: Let Q denote the set {i: bi = 1} in the context of the Equations 1, 3, or 4, used when computing N(g, s).

7: Choose an ai, where i 2 Q, with probability N(ai)P
x2Q

N(ax)
.

8: Assign an event type to g based on whether the chosen ai was derived from cS($,$), cD($,$), or cY($,$).

9: Consider the sets X0 and X† for the chosen ai, as defined in Equation 2.

10: Assign the mapping M(g0) to be node s from X0 with probability N(g0‚ s)P
x2X0 N(g0‚ x)

.

11: Assign the mapping M(g00) to be node s from X† with probability N(g00‚ s)P
x2X00 N(g00‚ x)

.

Steps 6 through 11 can actually be implemented during the nested post order traversal of Procedure

ComputeNumSolutions for all possible g 2 I(G) and s 2 V(S). This has the advantage of reducing the

overall space complexity of the algorithm from O(mn2) to O(mn) since we need not store all the information

about the ais and the X0 and X†, etc., for later reuse by Procedure RandomOptimalReconciliaton.

Based on the details of the procedure above, we have the following theorem.

Theorem 5.2. Procedure RandomOptimalReconciliation generates each optimal reconciliation with

equal probability.

Proof. Observe that the mapping assignment for g = rt(G) (Step 4) is consistent with the goal of

generating each optimal reconciliation uniformly at random. We will prove the theorem by induction on the

nodes of G. Consider some g 2 I(G) and suppose that the procedure fixes the mapping of g to some node s

from V (S). It suffices to show that each optimal reconciliation of G(g) with S is now equally likely to be

generated by the procedure, that is, each of those optimal reconciliations is generated with probability

1/N(g, s). By the proof of Theorem 5.1, we know that the ais, for i 2 Q (Step 6), divide the reconciliations

counted in N(g, s) into disjoint subsets. The procedure chooses one of these ais at random based on their

probability mass and ensures that the generated reconciliation of G(g) with S is from the chosen ai (Steps 8

through 11). It remains to show that the procedure generates a reconciliation uniformly at random from

among all the reconciliations that make up the chosen ai. Let {g0,g†} = ChG(g) and recall that the term ai

consists of
P

x2X0 N(g0‚ x) ·
P

x2X00 N(g00‚ x) reconciliations (Eq. 2). To ensure a uniformly random gener-

ation of the reconciliations counted in ai, the mapping s0 2 X0 for g0 should be chosen with probability
N(g0‚ s0) ·

P
x2X00 N(g00‚ x)

N(ai)
, which is equal to N(g0‚ s0)P

x2X0 N(g0‚ x)
(by Eq. 2). Similarly, the mapping s00 2 X00 for g† should

be chosen with probability N(g00‚ s00)P
x2X00 N(g00‚ x)

. Indeed, this is exactly how the procedure assigns the mappings of

g0 and g† in Steps 10 and 11. -

The overall time complexity of our algorithm for generating optimal reconciliations uniformly at random

is dominated by that of Procedure ComputeNumSolutions and is consequently O(mn2). This is only a factor

of n slower than the fastest known algorithm for the MPR problem (Bansal et al., 2012).

Our implementation of the random sampling algorithm will be made available as part of the next release

of the RANGER-DTL software package (Bansal et al., 2012).

6. EXPLORING THE SPACE OF OPTIMAL RECONCILIATIONS

We applied our method to the biological dataset to understand the space of optimal reconciliations for the

approximately 4700 gene trees in the dataset. As before, we used event costs PD = 2, PY = 3, and Ploss = 1

for this analysis. For this study, we focused on understanding how similar the different optimal recon-

ciliations are to each other. To that end, we used our algorithm to sample 500 optimal reconciliations for
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each gene tree and wrote a program that reads in these samples and summarizes them as follows: For each

internal node in the gene tree we (i) consider the fraction of times that node is mapped to the different nodes

of the species tree, and (ii) consider the fraction of times that node is labeled as a speciation, duplication,

and transfer event. We used this to investigate the stability of the embedding of the gene tree into the

species tree (i.e., the stability of gene node mappings), and the stability of event assignments for the internal

nodes of the gene tree.

We first checked to see how stable the gene node mappings were across the internal nodes in all 4699

gene trees. Figure 4a shows the results of this analysis. Overall, we observed that mappings tended to be

fairly well conserved across the different multiple optima. For instance, we observed that 73.15% of the

internal gene tree nodes had the same mapping across all 500 samples. Recall that only 17% of the gene

trees have a unique solution. We also repeated this analysis for event assignments and these results are also

shown in Figure 4a. Amazingly, we observed that 93.31% of the nodes had a consistent event assignment

across all 500 samples. This suggests that event assignments tend to be highly conserved across the

different multiple optima. Thus, even in those instances where there are many different optimal recon-

ciliations, it should be possible to confidently assign event types to most internal nodes of the gene tree

(even though the mappings of the nodes themselves may not be consistent across the different multiple

optima). This has important implications for understanding gene family evolution, since the inference of

orthologs, paralogs, and xenologs depends only on the event assignments for gene tree nodes.

In practice, users are often interested in analyzing the evolutionary history of a specific gene family. We

thus asked the following question: Given a gene tree from the biological dataset, what fraction of its nodes

can be expected to have (i) a consistent mapping, and (ii) a consistent event assignment across all 500

samples. Figure 4b shows the results of this analysis. The results show that for most gene trees, event

assignments are completely consistent across all samples for most of their internal nodes. For instance, we

observed that 60.2% of the gene trees have a consistent event assignment for all of their internal nodes, and

almost all gene trees had a consistent event assignment for at least half of their internal nodes. As we

observed before, gene tree node mappings tend to be more variable, but still, over 91% of the gene trees had

a consistent mapping for at least half of their internal nodes. We also tested to see if there was a correlation

between the number of optimal reconciliations for a gene tree and fraction of its internal nodes with

consistent mappings or consistent event assignments. To our surprise, we found no correlation (Fig. 5).

Thus, even if a gene tree/species tree pair have many optimal reconciliations, a large fraction of the gene

tree nodes can still be expected to have consistent mappings and event assignments.

It is worth noting that our analysis of this entire *4700 gene tree, 100-taxon dataset, with 500 computed

optimal reconciliations for each gene tree, required only about a week of running time on a desktop

computer using a single 3 GHz processing core and 4 GB of RAM.

We also analyzed the stability of the mappings and assignments using the dated version of the DTL-

reconciliation problem (i.e., the D-MPR problem) and obtained similar results. Specifically, we observed

that for the dated version, 72.4% and 94.8% of the internal nodes has consistent mapping and event

FIG. 4. Stability of mappings and event assignments. The plot in part (a) shows the fraction of internal nodes from

the 4699 gene trees that have the same mapping or the same event assignment across at least a certain fraction of the

500 samples. The plot in part (b) plots the fraction of the 4699 gene trees that have at least a certain fraction of their

nodes with a consistent mapping or a consistent event assignment across all 500 samples.
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assignments, respectively, in each of the 100 random samples we tested. Thus, the additional restriction on

transfers imposed when a fully dated species tree is used appears to have little effect on the consistency of

assignments and mappings.

7. APPLICATION TO UNDERSTANDING SENSITIVITY TO EVENT COSTS

The ability to explore the space of multiple optimal reconciliations makes it possible to study the effect

of using different event costs on the reconciliation. For instance, one can compare if the mapping or event

assignments that are consistent across the multiple optima for a particular event cost assignment are also

consistent across a different event cost assignment. Similarly, if one is unsure of which event cost as-

signment to use, one can try out several different event costs, compute a set of random samples for each

event cost assignment, and aggregate the samples from all event cost assignments into a single analysis to

understand which aspects of the reconciliation are conserved across the different event cost assignments.

We performed a preliminary study of the effect of using different event costs on the analysis of the

biological dataset. Recall that our default event costs are PD = 2, PY = 3, and Ploss = 1. For this study, we

kept Ploss = 1 but considered the following combinations of the duplication and transfer costs: (i) PD = 2,

PY = 4, (ii) PD = 2, PY = 2, (iii) PD = 3, PY = 3, and (iv) PD = 1, PY = 1. We computed 100 random

samples for each setting of event costs.

We first tested the impact of different cost assignments on the number of inferred speciation, duplication,

and transfer events. Since the number of inferred events can vary across the different optimal reconcili-

ations, even for the same fixed event cost assignment, we only considered those event assignments that are

supported by all 100 samples (500 samples in case of the default cost assignment). Table 1 shows the

results of our analysis. As expected, we observe that as the relative cost of a transfer event or duplication

event increases, the number of inferred transfers or duplications, respectively, decreases. For instance,

when the event cost assignment is changed from PD = 2 and PY = 3 to PD = 2, PY = 4, the number of

transfers decreases from 62540 to 56217, with a corresponding increase in the number of speciations and

duplications. Note also that the total number of speciations, duplications, and transfers with 100% support

Table 1. Impact of Event Costs on Event Inference

Event type

PD = 2

PY = 3

PD = 2

PY = 2

PD = 2

PY = 4

PD = 3

PY = 3

PD = 1

PY = 1

Speciation 69174 64473 70582 70762 49973

Duplication 16501 12796 19813 12970 12385

Transfer 62540 67191 56217 65006 71977

This table shows the number of inferred speciation, duplication, and transfer events (inferred

consistently across all random samples) for the different event cost assignments.

FIG. 5. Consistency of mappings and event assignments by number of optimal reconciliations. (a) Fraction of gene

tree nodes that have a consistent mapping across all 500 samples. (b) Fraction of gene tree nodes that have a consistent

event assignment across all 500 samples.
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is significantly smaller for the cost assignments PD = 2 and PY = 2, and PD = 1 and PY = 1, than for the

other cost assignments, indicating more variability in the reconciliations.

Next, we tested the impact of different cost assignments on the number of optimal reconciliations. Table

2 shows the results of our analysis. Note that the number of optimal reconciliations increases significantly

for the cost assignments PD = 2 and PY = 2, and PD = 1 and PY = 1, compared to the other cost assign-

ments. This is likely related to the observation made above that the total number of speciations, dupli-

cations, and transfers with 100% support is significantly smaller for these two cost assignments than for the

others.

Finally, we considered the following question: What fraction of the gene tree nodes with consistent

mappings (event assignments) under the default costs also have the same consistent mappings (re-

spective event assignments) under the alternative event costs? The results of this analysis for the four

combinations of event costs listed above are as follows: For mappings, the fractions are 94%, 83.38%,

92.04%, and 63.97%, respectively. And, for event assignments, the fractions are 92.06%, 91.52%,

96.07%, and 80.37%, respectively. As the analysis indicates, consistent mappings and event assignments

tend to be well conserved even when using different event costs. Even with the rather extreme event

costs of PD = PY = Ploss = 1, almost 64% of the consistent mappings and over 80% of the event as-

signments are conserved.

8. CONCLUSION

In this work, we have presented an efficient and scalable approach to the problem of multiple optimal

DTL-reconciliations. Our approach is based on random sampling, and we show how to sample the space of

optimal reconciliations uniformly at random, efficiently in O(mn2) time per sample. The sampling-based

approach makes it possible for users to explore the space of optimal reconciliations and to distinguish

between stable and unstable parts of the reconciliation. This approach also allows users to investigate the

effect of using different event costs on the reconciliation. Our analysis of the biological dataset provides

the first real insight into the space of multiple optima and reveals that many, if not most, aspects of the

reconciliation remain consistent across the different multiple optima, and that these can be efficiently

inferred and used for understanding gene family evolution. We believe that this work represents an

important step toward making DTL-reconciliation a practical method for understanding gene family

evolution.

Many aspects of the space of optimal reconciliations remain to be explored. For instance, it would be

interesting to investigate why so many of the input instances have millions (and more) of multiple optima.

In this work, we did not consider the effect of alternative optimal gene tree rootings on the reconciliation

space, and we would like to study this further. The ability to handle multiple optima also enables the

systematic evaluation of the accuracy of DTL-reconciliation at inferring evolutionary history correctly, and

we plan to pursue this further. It would also be instructive to study the effect of using different event costs

more thoroughly. In our work, we have only considered optimal reconciliations, and it might be beneficial

to also consider slightly suboptimal reconciliations; doing so in a principled way might require the use of a

probabilistic model of gene family evolution by duplication, transfer, and loss (e.g., Tofigh, 2009).

Table 2. Impact of Event Costs on Number of Optimal Reconciliations.

Number of optimal

reconciliations

PD = 2

PY = 3

PD = 2

PY = 2

PD = 2

PY = 4

PD = 3

PY = 3

PD = 1

PY = 1

1 16.7% 13.1% 17.8% 15.6% 8.3%

[2, 9] 30.9% 25.7% 30.6% 28.0% 19.8%

[10, 99] 19.5% 20.7% 19.7% 20.1% 21.1%

[100, 9999] 17.4% 20.1% 16.3% 19.4% 20.8%

[10000, 99999] 5.3% 6.4% 4.9% 5.6% 7.2%

[105, 1016] 10.2% 14.0% 10.7% 11.3% 22.8%

This table shows the fraction (%) of gene trees for which the number of optimal reconciliations

lies within the given ranges, for different event cost assignments.
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