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Collapse arresting in an inhomogeneous quintic nonlinear Schro¨dinger model

Yu. B. Gaididei,* J. Schjo”dt-Eriksen, and P. L. Christiansen
Department of Mathematical Modelling, The Technical University of Denmark, DK-2800 Lyngby, Denmark
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Collapse of (111)-dimensional beams in the inhomogeneous one-dimensional quintic nonlinear Schro¨-
dinger equation is analyzed both numerically and analytically. It is shown that in the vicinity of a narrow
attractive inhomogeneity, the collapse of beams in which the homogeneous medium would blow up may be
delayed and even arrested.@S1063-651X~99!03610-7#

PACS number~s!: 42.65.Jx, 03.65.Ge

I. INTRODUCTION

The spatial contraction of wave packets and the formation
of a singularity in finite time—the wave collapse or, more
generally, the blowup of the wave packet—is one of the
basic phenomena in nonlinear physics of wave systems. Ex-
amples are the self-focusing of light@1–3# in optics, the col-
lapse of Langmuir waves in plasma@4#, the self-focusing of
gravity-capillary surface waves@5#, the blowup of nonlinear
electronic excitations in molecular systems@6#, and the col-
lapse in a Bose gas with negative scattering length@7,8#.
Wave collapse is an efficient process of energy and/or mass
localization as well as energy dissipation~see, e.g., review
papers@9–11#!.

The theory of self-focusing wave packets in optics,
plasma, and solid-state physics is based on the analysis of the
nonlinear Schro¨dinger equation~in the theory of the Bose-
Einstein condensation this equation is called the Gross-
Pitaevskii equation@12#!

i ]zc1¹2c1ucu2sc1V~rW !c50, ~1!

wherec(rW,z) is the complex amplitude of the quasimono-
chromatic wave train~the condensate wave function! , ¹2

5( i 51
d ]xi

2 is the d-dimensional Laplace operator,z is the

propagation variable~the time variable in Bose-Einstein
theory! and rW5(x1 , . . . ,xd) is the spatial coordinate. The
third term in Eq.~1! characterizes the nonlinear properties of
the system: light intensity-dependent refractive index in op-
tics, effective self-interaction of Langmuir waves in plasma,
or the interaction between Bose particles, etc. Finally the
fourth term in Eq.~1! is either an inherent space-dependent
refractive index of the material or an external~confining!
potential. Physical systems, which share the same value of
the factorsd, possess many similar features such as stability
properties of the stationary solutions. It was found@10,13#
that in homogeneous systems@V(rW)50# the stationary solu-
tions of Eq.~1! are stable whensd,2 and unstable when
sd.2 with the casesd52 being marginal. In the latter
case the excitation either blows up or disperses depending on
whether a certain characteristic measure of the excitation is

above or below a threshold value, respectively. This measure
is, e.g., the beam power in optics, the number of atoms in
Bose-Einstein condensates, and the number of excitations in
plasma physics.

The dynamics of self-focusing waves in inhomogeneous
nonlinear systems has become a topic of extensive studies
due to the rich dynamical properties induced by the interplay
between nonlinearity, dispersion, and inhomogeneity. The
effects of periodic spatial modulation of the refractive index

@V(rW)5v cos(kx)# in the spatiotemporal evolution of pulses
in nonlinear waveguides were recently investigated using a
variational approach and numerical simulations@14#, while
exact sufficient criteria for blowup were obtained in@15,16#.

Feit and Fleck@17# have first pointed out that if non-
paraxiality of the beam propagation is taken into account,
blowup does not occur. This result was further supported by
using a collective coordinate approach@18#, by adding an
additional term that models the variation of the propagation
constant along the direction of propagation@19# and by ap-
plying an asymptotic analysis@20,21#.

The effect of disorder on the spatiotemporal evolution of
pulses in nonlinear waveguides were studied in Ref.@22#
where it was shown that random fluctuations delay collapse.

Also, criteria for existence and stability of stationary so-
lutions in inhomogeneous systems have attracted a lot of
attention. In@29# modes of an inhomogeneous structure were
first found, while a generel criterion for the existence of
stable stationary solutions was derived in@23#.

In physical systems, where an excitation is located in the
vicinity of a smooth bell-shaped inhomogeneity with a width
much larger than the width of the excitation, one may model
the inhomogeneity as a parabolic potential. The possibility of
controlling the self-focusing of nonlinear excitations in mo-
lecular structures with parabolic-type inhomogeneities was
investigated in Ref.@6#. The acceleration of the collapse of
light beams in weakly nonlinear dispersive media with either
a constant or weakly oscillating parabolic density profile was
investigated in Ref.@24#. Collapse and Bose-Einstein con-
densation in trapped Bose gas with negative scattering length
in the presence of the parabolic confining potential,V(rW)
;r 2, were studied in Refs.@7,8#. However, the parabolic
model breaks down when the widths of the inhomogeneity
and the excitation are of comparable size. It is the idea of this
paper to investigate the dynamical evolution of excitations in
the presence of such narrow inhomogeneities.
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To meet this end we use the one-dimensional quintic non-
linear Schro¨dinger equation~NLSE! as our model. A key
element in this investigation is to show how the collapse of
excitations, which are characterized as supercritical in the
homogeneous case, may be delayed or even arrested when a
narrow attractive inhomogeneity is introduced into the sys-
tem. As the present model due to the relationsd52, has a
close relation to the optical application of the two-
dimensional~2D! cubic NLSE@10,13# we will in the follow-
ing refer to the excitations as beams.

The paper is organized as follows. In Sec. II we introduce
the model and describe its basic properties in the homoge-
neous case before discussing the numerical results obtained
when an inhomogeneity is included in the model. From the
outcome of the numerical calculations it will become clear
that the presence of a narrow attractive inhomogeneity has
the potential of postponing or even arresting the formation of
a singularity for beams which would collapse in the homo-
geneous case. In Sec. III we address the problem analyti-
cally. Using a certain coordinate transformation enables us to
calculate energy radiation from the beam using methods de-
veloped to characterize the tunneling of probability in linear
quantum-mechanical systems. Finally, Sec. IV summarizes
our results.

II. MODEL AND EQUATIONS OF MOTION

To model the propagation of a (111)-dimensional beam,
c(x,z), we use the equation

icz1cxx1ucu4c1V~x!c50, ~2!

wherex is a transverse coordinate andz measures the propa-
gation length. In the homogeneous case@V(x)50#, Eq. ~2!
has the stationary solution

c~x,z!5C~x,L! ei L z, ~3!

where the real shape functionC(x,L) satisfies the equation

d2C~x,L!

dx2
1C5~x,L!2C~x,L!50, ~4!

which has the solution

C~x,L!5~3L!1/4sech1/2~2 AL x! ~5!

with the mass given by

N~L![E
2`

`

uc~x,z!u2 dx5
A3p

2
. ~6!

According to the Vakhitov-Kolokolov criterion, the solu-
tions, Eq. ~3!, are stable and unstable ifdN/dL.0 and
dN/dL,0, respectively. AsN(L) from Eq. ~6! is seen not
to depend onL, application of the stability criterion implies
marginal stability of the stationary solutions. Thus, if a sta-
tionary solution is perturbed in such a way thatN.Nc

5A3p/2, a singularity in the intensity profileucu2 appears
within finite propagation length. In this case the beam is said
to have undergone a collapse. On the other hand, a perturbed
stationary solution withN,Nc cannot remain localized and

the beam ultimately disperses completely. This kind of insta-
bility also characterizes stationary solutions of the homoge-
neous 2D NLSE.

The presence of an inhomogeneity may significantly in-
fluence the dynamics of beams with arbitrary initial condi-
tions ~see, e.g.,@25#!. In particular, it is our goal to investi-
gate whether the collapse of beams withN.Nc can be
postponed or even arrested. To undertake this investigation
we will mainly focus on the situation, where the linear part
of the operator in Eq.~1!, 2]x

22V(x), supports a bound
state. In this case stable stationary solutions withN,Nc ex-
ist @23# and it is thus relevant to ask if these bound states act
as attractors for certain classes of initial conditions.

When performing the numerical experiments we use a
smoothed version of the rectangular potential well,

V~x!5e@u~x1a!2u~x2a!#. ~7!

whereu(x) is the Heaviside step function ande and 2a are
the height and width of the potential, respectively. As initial
conditions we use a slightly supercritical (N.NC) perturba-
tion of the amplitude functionC(x,L) given by

c~x,0!5C„0.99~x2X0!,1…, ~8!

whereX0 determines the initial distance between the centers
of the beam and potential. In the first series~Figs. 1–6! of
experiments the potential height and width are fixed ate
50.7 anda51, while X0 is varied in order to control the
initial strength of beam/potential interaction. As is seen, the
beam collapses in two different cases. When the center of the
beam initially is localized sufficiently close tox50 the ef-
fect of the potential is to enhance the speed of collapse com-
pared to the scenario withV(x)50. This kind of dynamics is
illustrated in Fig. 1. On the other hand, a large distance be-
tween the beam center andx50 results in negligible cou-
pling between beam and potential. Consequently, the beam
collapses in approximately the same way as in the homoge-
neous system corresponding to Eq.~2!. In Fig. 6, X055
corresponds to this scenario, while Fig. 5 (X053.468 85)
illustrates how the presence of the potential can increase the
propagation length needed for a singularity to develop in the
intensity profile. In between the two extremes where collapse
occurs, there exists a range of values for the initial position
of the beam center, which leads to arrest of the collapse.
~See, Figs. 2–4.! One remarkable feature of this process is
that the beam radiation is significantly enhanced by the in-
homogeneity@26# and as is seen the radiation develops
mainly at the side of the beam that is opposite the well. To
interpret the outcome of the numerical experiments in a
quantitative way it is useful to have measures for the width
and center of the beam in the case when the beam in the
large propagates as a single localized entity. To meet this end
we introduce the quantities

R5E
2`

`

ucu6dx, ~9!

and

X5
1

NE2`

`

xucu2dx, ~10!

4878 PRE 60GAIDIDEI, SCHJO”DT-ERIKSEN, AND CHRISTIANSEN



which in the self-similar approach coincides with the inverse
width squared and the position of the maximum intensity,
respectively. For a collapsing beam,R diverges and can,
therefore, be applied to the outcome of the numerical calcu-
lations as a measure of self-focusing. In the experiment
shown in Fig. 2~a! whereX050.5, the width decreases until
a certain propagation length after which the beam is sepa-
rated into radiation and a core part. The overall motion of
this core part is given by the centroid oscillations in Figs.
2~b! and 2~c!,

which initially are accompanied by radiation. However, the
emission of radiation decreases as a function of propagation
length and is atz560 no longer visible in Fig. 2~a!. In Fig.
3~a!, whereX052, the beam is seen to become very quickly
distorted by the potential, thus making the interpretation ofX
andR, as beam center and inverse width squared, valid only
initially. Having seen the outcome of the numerical calcula-
tions, it is useful to compare theX0 dependence of the initial
centroid acceleration,Xzz(0), and thecollapse properties of
the beam. The centroid acceleration vanishes atX050 and
X0→`, while Xzz(0) in between these two limits is positive.
On the other hand, the beam has been observed to collapse
when X0 is either sufficiently small or large. From this ob-
servation we expect the centroid acceleration to facilitate ra-
diation thus enabling the beam mass to drop belowNC ,

FIG. 1. The half widtha of the potential and the heighte of the
potential are given by 1.0 and 0.7, respectively. The following ini-

tial condition for C is used: C(x,0)5AA3sech@1.98(x2X0)#,
where the initial value of the centroidX0 equals 0.25. In~a! the
amplitude ofC(x,z), uC(x,z)u is shown for different values ofz.
In ~b! and ~c! the centroid,X, and the inverse width squared,
* uCu6dx, respectively, are plotted versusz.

FIG. 2. Same as Fig. 1 withe50.7, a51, andX050.5.
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where collapse no longer is possible. This point is subject to
rigorous mathematical treatment in the next section.

Another series of experiments, which we performed, was
to launch a beam into a system with a negative potential
barrier (e,0). The results of these experiments are shown in
Figs. 7~a!, 7~b!, and 7~c! and Figs. 8~a!, 8~b! and 8~c!. Here
the beam either collapses or disperses depending on its initial
position with respect to the barrier. A stabilizing effect of the
potential has not been observed in this case.

These numerical experiments demonstrate three remark-
able features of the dynamics of supercritical beams in inho-
mogeneous systems:~i! The collapse of the beam can be
delayed and even arrested if the initial distance between the
centers of the beam and potential well is in a certain interval.
The beam collapses when it is either too close or too far

away from the well.~ii ! The inhomogeneity facilitates the
radiation of the beam. The radiation occurs mainly in the
direction away from the well.~iii ! There is a correlation be-
tween the centroid motion and the width of the beam.

III. ANALYTICAL RESULTS

In order to give some analytical insight into this problem
we introduce the transformation of the noninertial frame of
reference in which the centroid of the beam

X~z!5
1

NE2`

`

xuc~x,z!u2dx ~11!

FIG. 3. Same as Fig. 1 withe50.7, a51, andX052.0.

FIG. 4. Same as Fig. 1 withe50.7, a51, andX053.468 75.
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is at rest. Thus,

c~x,z!5c̄~ x̄,z!expS ik~z!x̄1 i E
0

z

k2~z8!dz8D , ~12!

where x̄5x2X(z) is the transversal coordinate in the new
frame of reference andk(z)5 1

2 Ẋ is the momentum canoni-
cally conjugated to the centroid coordinate~dot denotes the
derivatived/dz). In the new frame of reference, Eq.~2! takes
the form

i c̄z1c̄ x̄x̄1uc̄u4c̄1V„x̄1X~z!…c̄2 1
2 Ẍ x̄c̄50. ~13!

The centroid coordinateX(z) satisfies the equation

1
2 Ẍ5

1

NE2`

`

uc~x,z!u2
dV~x!

dx
dx. ~14!

The fourth term on the right hand side of Eq.~13! describes
the influence of the linear potential in the new frame of ref-
erence while the fifth term represents the inertial force work.
It is worth noticing that due to Eqs.~13! and ~14! the func-
tion c̄(x,z) should satisfy the following compatibility con-
dition:

E
2`

`

xuc̄~x,z!u2dx50. ~15!

FIG. 5. Same as Fig. 1 withe50.7, a51, andX053.468 85. FIG. 6. Same as Fig. 1 withe50.7, a51, andX055.0.
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Using the lens transformation first used in the homoge-
neous case in@27#

c̄~ x̄,z!5
1

AL~z!
F~j,z!expS i z1 i

L̇

L~z!

x2

4
D , ~16!

whereL(z) is the beam width, and new independent vari-
ables are defined as

j5
x̄

L~z!
, ż5

1

L2~z!
, ~17!

we obtain from Eq.~13! the equation for the shape function
F(j,z) in the form

i Fz1Fjj1uFu4F2F2L2W~j!F50, ~18!

where

W~j!52 1
4 j2 b~z!/L21eF~j,L,X! ~19!

and

eF~j,L,X!5 1
2 Ẍ Lj2V~jL1X! ~20!

FIG. 7. Same as Fig. 1 withe520.7, a51, andX052.0.

FIG. 8. Same as Fig. 1 withe520.7, a51, andX050.75.
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with

L̈ L352b~z!. ~21!

The potentialW(j) represents the influence of inertial
forces ~the centrifugal potential2 1

4 b(z)/L2j2 and the po-
tential 1

2 Ẍ Lj of accelerated centroid motion! and of the po-
tential @2V(jL1X)#, not found in the homogeneous case,
on the beam dynamics . WhenL(z) is known Eqs.~14!, ~18!,
and ~19! describe the beam evolution.

In the homogeneous case@V(x)50# when Eq. ~2! de-
scribes a critical collapse, the functionb(z) that in this case
is related to the excess mass above the critical massNc
through

b5
N2Nc

M
, M5

1

4E2`

`

x2C2~x,1!dx5
A3p3

128
.

~22!

From Refs.@28–35# is known thatb(z) satisfies the equation

ḃ52
8A3

M L2
expS 2

p

Ab
D . ~23!

This equation can be obtained from the solvability condition
for the asymptotic expansion of the self-similar shape func-
tion F(j,z) @28–33# or by using a multiscales approach
@35#.

Let us consider now the beam evolution in the presence of
the linear potentialV(x). It is assumed that~i! inhomogene-
ity is weak: the linear part of the potentialV(x) is of small
intensity (max$uV(x)u%5e,1) and narrow@V(x)'0 when
uxu<a#. We are interested in the case of narrow inhomoge-
neity because if the inhomogeneity is very broad compared
to the width of the beam, the shape of the inhomogeneity can
be Taylor expanded around the center of the beam yielding a
parabolic potential in the NLSE. This case was investigated
in Refs.@6,24#. However, if the width of the inhomogeneity
is of the same order as the beam width, the Taylor expansion
is no longer valid and one should then, as we did, use a
potential that is nonparabolic.~ii ! Supercriticality is small:
the mass of the beam only slightly differs from the critical
value, i.e.,N2Nc /Nc!1 .

Let us represent the wave functionc̄( x̄,z) in the noniner-
tial frame of reference as

c̄~ x̄,z!5H cs if 2j l L~z!< x̄<j r L~z!

co if x̄.j r L~z! or x̄,2j l L~z!,

wherecs is the inner core function andco is its outer part.
j r (j r@1) andj l (j l@1) are constants, which characterize
the size of the beam. It is worth noting that in the presence of
inhomogeneity the beam may be asymmetric and therefore in
principlej rÞj l . The mass of the inner core of the beam~in
what follows we will call this part of the beam mass the core
mass! is

Ns5E
2j l L(z)

jr L(z)

uc̄~x,z!u2 dx5E
2j l

jr
uFs~j,z!u2 dj. ~24!

Whenb50 ande50, Eq.~18! has the stationary solution
@see Eqs.~4! and ~5!#

C[C~j,1!531/4sech1/2~2j!. ~25!

For smallb ande one can expect that the functionF(j,z)
has a very small derivativeFz and thus Eq.~18! has a qua-
sistationary solutionFs close to solution~25! in the range

uju<j0!j j , ~ j 5r ,l !,

bj0
2!1, uẌL3j0u!1. ~26!

First we want to calculate the core massNs in the presence
of inertia forces and inhomogeneity. We are looking for a
quasistationary solution of Eqs.~18! and ~19! in the form

Fs5~C1bS1eT!ei elz, ~27!

wherel is the eigenfrequency shift caused by the potential
V(x). Substituting expansion~27! into Eqs.~18! and~19!, it
is found that

LS52 1
4 j2C, ~28!

LT52FC1lC, ~29!

whereL5]2/]j215C421. Equations~28! and~29! are al-
ways solvable because the zero-mode function is orthogonal
to the right-hand side of Eq.~28! due to the symmetry of the
functionC(j). It is also orthogonal to the right-hand side of
Eq. ~29! because the orthogonality condition

E
2`

` F1

2
Ẍ j1

1

L
V~jL1X!GCCjdj50 ~30!

may be rewritten in the form

1

2
ẌNc2

]

]X
V~L,X!50, ~31!

where

V~L,X!5E
2`

`

C2~j!V~jL1X!dj

[E
2`

`

V~x!C2S x2X

L D dx ~32!

is an effective potential caused by the presence of the linear
potentialV(x). Comparing Eqs.~14! and solvability condi-
tion ~31!, they are seen to coincide ifucu5(1/AL)C(jL
1X) in the equation for centroid motion~14!.

Using the relationL(]C(j,L)/]L)L515C where the
function C(j,L) is given by Eq.~5!, one obtains that

E
2`

`

CSdj52
1

4E2`

`

j2CS ]C~j,L!

]L D
L51

dj5
1

2
M ,

~33!
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E
2`

`

CTdj5E
2`

`

~lC2FC!S ]C~j,L!

]L D
L51

dj

5
L3

4

]

]L
V~L,X!. ~34!

Substituting expansion~27! into Eq. ~24! and taking into
account Eqs.~34! and ~32!, one obtains the expression for
the core mass,

Ns5E
2j l

jr
~C1bS1eT!2dj.E

2`

`

~C212bC S12eC T!

5Nc1Mb1
L3

2

]

]L
V~L,X!. ~35!

This equation gives the link between the core massNs , its
width L, and centroidX.

We shall obtain an equation forNs by considering the
radiation rate for the core mass. For this purpose it is conve-
nient to rewrite Eqs.~18! and ~19! as the Schro¨dinger equa-
tion

iFz52Fjj1U~j!F,

U~j!512 1
4 bj21 1

2 Ẍ L3j2L2 V~jL1X!2uFu4. ~36!

The potential profileU(j) for the case when the inhomoge-
neity potentialV(x) is a rectangular potential well@see Eq.
~7!# is shown in Fig. 9. The potential energy of inertial forces

( 1
4 bj2 and 1

2 ẌL3j) makes the functionU(j) unbounded
from below and as a result the motion of a particle in this
potential becomes infinite. This situation is closely related to

the theory of the Stark effect in atoms@36# where even a
weak electric field is sufficient to create a potential barrier
and makes it possible for electrons to escape from the
nucleus.

It is worth noting that the accelerated center of motion

potential (12 ẌL3j) significantly modifies the potential profile
U(j) making the profile asymmetric and facilitating the es-
cape to the side opposite the position of the inhomogeneity.

From Eq. ~18! we obtain that the radiation rate for the
core mass is given by

d

dt
Ns52J,

J[Jr1Jl ,

Jr[2
1

L2
~ iF* Fj1c.c.!uj5jr

,

Jl[
1

L2
~ iF* Fj1c.c.!uj52j l

, ~37!

where Jr (Jl) is the current density~radiation flux! to the
right ~left! of the beam. The derivation of the expression for
the current densityJ is rather cumbersome and is given in the
Appendix. Here we present only the final result. When the
centrifugal coefficientb is positive the current densities may
be present as follows:

Jj5
4

L2
A3 D j ~ j 5r ,l !,

Dr5expH 2
2

Ab
S p

2
~11k2!1k1~11k2!arctan~k! D J ,

Dl5expH 2
2

Ab
S p

2
~11k2!2k2~11k2!arctan~k! D J ,

~38!

where the notation

k5
ẌL3

2 b
~39!

is used. HereDr (Dl) is the transmission coefficient for the
right ~left! potential barrier in the potential profileU(j).

In accordance with Eqs.~25! and ~32! for the inhomoge-
neity potentialV(x) given by Eq.~7! the effective potential
V(L,X) has the form

V~L,X!5eA3S arctan expH 2
a2X

L J
2arctan expH 22

a1X

L J D . ~40!

The motion for the centroidX(z) is governed by the equation

FIG. 9. In ~a! and~b! the potential functionU(j) is depicted for
b.0 andb,0, respectively.
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1

2
Ẍ5

2

p

e

L FsechS 2
X1a

L D2sechS 2
X2a

L D G . ~41!

Substituting the centroid acceleration1
2 Ẍ in form ~41! into

Eq. ~38!, one obtains the current densityJl(X) @note that
Jl(X)5Jr(2X)#, which for a givenb.0 is presented in
Fig. 10. As is seen, the current density is a highly asymmet-

ric function of X. The beam radiates mainly away from the
inhomogeneity. This result is in agreement with the results of
numerical simulations shown in Figs. 1~a!–6~a!.

When the centrifugal coefficientb is negative the beam

FIG. 11. The half widtha of the potential and the heighte of the
potential are given by 1.0 and 0.2, respectively. The following ini-

tial condition for X, Ẋ, L, L̇, and v are used:X(0)50.1, Ẋ(0)

50, L(0)51, L̇(0)50, andv(0)50.05. In the upper figure the
inverse width squared,R51/L2, is shown as a function ofz. In the
middle figure the centroidX is depicted versusz. Finally, the lower
figure shows thez dependance ofv.

FIG. 12. Same as Fig. 11 withX(0)50.5.

FIG. 13. Same as Fig. 11 withX(0)50.9.

FIG. 10. Plot of the flux to the left forb.0. In the figure it is
seen that the pulse mainly radiates away from the inhomogenity.
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radiates only to one side, to the side opposite the inhomoge-
neity @compare the shape of the effective potentialU(j) in
Figs. 9~a! and 9~b!#. The current density in this case has the
form

J5
4

L2
A3 D,

D5u~Ẍ2L614b! expH 22A 1

ubu F uku1
1

2
~11k2!

3 lnS uku11

uku21D G J , ~42!

where theu function in front of the exponential function
shows that forb,0 the radiation may take place only in the
presence of relatively strong inhomogeneities.

From Eqs.~37!, ~38!, and~42! we obtain that the radiation
rate for the core mass is determined by equation

J5
8

L2
A3 S u~b!expH 2p

11k2

Ab
J

3coshH 2
1

Ab
@k1~11k2!arctan~k!#J

1u~2b!u~Ẍ2L614b!

3expH 22A 1

ubuF uku1 1
2 ~11k2!lnS uku11

uku21D G J D .

~43!

FIG. 14. Same as Fig. 11 withX(0)51.0.

FIG. 15. Same as Fig. 11 withX(0)52.0.

FIG. 16. Same as Fig. 11 withX(0)53.0.
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This expression may be reduced to a more simple form in
limiting cases of weak and strong inhomogeneities:

J5
8

L2
A335 expS 2

p

Ab
D if b/L3@uẌu

expS 2
4

3

2

uẌL3u
D if ubu/L3!uẌu.

Thus in the case of weak inhomogeneity the radiation rate is
mainly determined by the centrifugal inertia force@b(z)#
while in the case of relatively strong inhomogeneity it is due

to accelerated centroid motion (1
2 Ẍ).

Combining Eqs.~21!, ~31!, ~35!, and ~37!, one obtains
that the set of ordinary differential equations, which describe
the evolution of the parameters of the beam in the presence
of inhomogeneity, has the form

L̈52
v

L3
1

1

2M

]

]L
V~L,X!, ~44!

v̇52
1

M
J~v,L,X!, ~45!

1

2
Ẍ5

1

Nc

]

]X
V~L,X!, ~46!

wherev5Ns2Nc /M is the excess core mass above critical,
J(v,L,X) is current density~43! in which the substitution

k5
2M

Nc
L3S 2Mv2L3

]

]L
V~L,X! D 21 ]

]X
V~L,X! ~47!

is used, andV(L,X) is the effective potential given by Eq.
~32!. It is worth noticing that in the adiabatic approximation
when v̇50, the set of Eqs.~44!–~46! coincides with equa-
tions, which were obtained in Ref.@37# using a collective
coordinate approach. As is seen from Eq.~45! the magnitude
of the excess core massv controls the speed of self-focusing,
whereas the decrease inv due to radiation in the nonadia-
batic case is governed by Eq.~44!. Thus a beam collapse is
avoided in the case where a sufficiently high radiation rate
brings down the excess core massv below zero before a
singularity has been formed.

We solve numerically the set of Eqs.~44! for the rectan-
gular well inhomogeneity potentialV(x) in the form given
by Eq. ~7!. The parameters used are

v~0!50.05, e50.2,

L~0!51, L̇~0!50, Ẋ~0!50,

X~0!50.1, 0.5, 0.9, 1, 2, 3. ~48!

The results of the simulations are presented in Figs. 11–16.
As is seen for a given degree of super criticalityv and
strength of the inhomogeneitye the beam evolution depends

on the initial distance between the beam and the center of the
inhomogeneity potential. Collapse arresting and stabilizing
of the excitation takes place forX(0)50.75 andX(0)50.9,
while for X(0)52 the excitation disperses. These results are
in qualitative agreement with numerical studies presented in
the previous section.

It is worth noting that tunneling effects here are essential:
in the vicinity of inhomogeneity the radiation rate increases
and, therefore, the mass of the beam varies withz (Ns5Nc
1Mv). The centroid motion and variations of the width of
the beam and its mass are obviously correlated.

IV. SUMMARY

In summary we have shown in this paper that the presence
of inhomogeneity permits the stabilization of otherwise col-
lapsing excitations. We have shown this via analytical analy-
sis and via numerical simulations. Analyzing the beam dy-
namics under the influence of attractive inhomogeneity one
can conclude that the collapse of the beam can be delayed
and even arrested if the initial distance between the beam and
the well is in a certain interval. The inhomogeneity facilitates
the radiation of the beam. The mass of the beam decreases
and becomes less than critical. In this way the singular be-
havior of the beam is prevented. Analytical and numerical
anisotropy of the radiation rate for the beam in the presence
of inhomogeneity was observed. The radiation occurs mainly
into the direction opposite the well position. We have also
shown that there is a correlation between the centroid motion
and the width of the beam and its mass.

In view of the similarity between the dynamics of the
two-dimensional cubic nonlinear Schro¨dinger equation and
the one-dimensional quintic nonlinear Schro¨dinger equation
@10#, our results indicate that two-dimensional supercritical
beams propagating in nonlinear waveguides can be con-
trolled by inhomogeneities effects, at least when the super-
criticality is not very big~the relative difference between the
beam power and the critical power is small!. The same sce-
nario could be important in the modeling of Bose-Einstein
condensation in trapped atomic gases.
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APPENDIX

In this appendix we derive an equation for the radiation
rate for the core mass. In this derivation we will use the
procedure presented in the review paper@21# ~this approach
was proposed by Malkin in@38#!.
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From Eq. ~18! we obtain that the radiation rate for the
beam mass is given by

d

dz
Ns52J,

J5Jr1Jl ,

Jr52
1

L2
~ iF* Fj1c.c.!uj5jr

,

Jl5
1

L2
~ iF* Fj1c.c.!uj52j l

, ~A1!

whereJr (Jl) is the current density to the right~left! of the
beam. As was mentioned above in the case of supercriticality
~small b) and weak inhomogeneity, one can neglect the
small termiFz . Then, Eq.~18! takes the form

Fjj2UF50,

U512
1

4
bj21

Ẍ

2
L3j2L2 V~jL1X!2uFu4. ~A2!

Let us consider separately the cases ofb positive and
negative. When

0,b;uẌ L3u2!1, ~A3!

the potentialU has four turning points~see Fig. 9!: two inner
~core! turning points

0 , j r
c5O~1!,

0 . j l
c5O~1!, ~A4!

and two outer turning points

j r
o5

2

Ab
~k1A11k2!,

j l
o5

2

Ab
~k2A11k2!, ~A5!

where the notationk5ẌL3/2Ab is used. It is worth noting
that the potentialV(jL1X) does not contribute essentially
to the position of the outer turning points due to its narrow
character. As it follows from Eq.~A3! an inequality,uj j

ou
@1 ( j 5r ,l ), takes place.

To calculate current densities~A1! we will set j r (j l) to
be just past the outer turning pointj r

o (j l
o) to the right~to the

left!. It can be done because in the classically inaccessible
regions j r

c,j,j r
o (j l

c,j,j l
o), the function F(j) de-

creases exponentially and such a shift will result in an expo-
nentially small contribution to the core massNs .

Let us consider first the current density to the right of the
beamJr . When

1!j!j r
o , ~A6!

we obtain from Eq.~A1!

F~j!.31/4e2j. ~A7!

Whenj.j r
o we can neglect the nonlinear term and the po-

tential V in Eq. ~A1! and in the WKB approximation~see,
e.g.,@36#! get

F~j!.
Cr

Ap~j!
expS i E

jr
o

j

p~ j̄ ! dj̄2 i
p

4 D , ~A8!

where

p~j!5AU5
Ab

2
A~j2j r

o!~j2j l
o! ~A9!

is the quasiclassical momentum andCr is a constant.
Using the connection formula of the WKB approach@36#,

we obtain from Eq.~A9! that for j,j r
o the functionF(j)

can be represented in the form

F~j!.2 i
Cr

Aup~j!u
expS U E

jr
o

j

p~ j̄ ! dj̄U D . ~A10!

In the interval 1!j!j r
o ,

U E
jr

o

j

p~ j̄ ! dj̄U5Sr2E
0

j

p~ j̄ ! dj̄.Sr2j, ~A11!

where

Sr5E
0

jr
o

up~ j̄ !u dj̄5
11k2

Ab
S p

2
1

k

11k2
1arctan~k!D .

~A12!

Comparing Eqs.~A7! and~A12! we see that inner and outer
parts of the functionF(j) can be matched if

Cr5 i31/4A2 exp~2Sr !. ~A13!

It is seen from Eq.~A8! that forj@j r
o the functionF(j) has

the asymptotic form

F~j!.
Cr

Aj
S 4

b D 1/4

expS i
Ab

4
j22 i

p

4 D . ~A14!

Therefore, introducing Eqs.~A13! and ~A14! into Eq. ~A1!,
we obtain that the current density to the right of the beam is
given by

Jr5
4

L2
A3 Dr , ~A15!

where

Dr5exp~22Sr ! ~A16!

is the transmission coefficient for the classically inaccessible
region @j r

c ,j r
o# . In the same way one can obtain that the
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current density to the left of the beam has the form

Jl5
4

L2
A3 Dl ,

Dl5exp~22Sl !, ~A17!

with Dl being the transmission coefficient for the classically
inaccessible region@j l

c ,j l
o#. Here,

Sl5E
j l

o

0

p~ j̄ ! dj̄5
11k2

Ab
S p

2
2

k

11k2
2arctan~k!D .

~A18!

If we substitute Eqs.~A15! and~A17! into Eq. ~A1!, we get
that the radiation rate for the core mass is

dNs

dz
52

8

L2
A3 expS 2p

11k2

Ab
D

3coshH 2
1

Ab
@k1~11k2!arctan~k!#J .

~A19!

Note that in the case of homogeneous quintic model when
Ẍ[0 radiation rate~A19! coincides with the rate that was
calculated in Ref.@35#.

Whenb,0 outer turning points~A5! exist when

Ẍ2L614b.0. ~A20!

But in contrast to the case of positiveb now there is only a
one-directional tunneling, to the side opposite the position of
inhomogeneity~see Fig. 9!. Neglecting the back process of
mass trapping due to waves that are reflected from the distant
turning point and using the same method as was described
above, we obtain for

2Ẍ2L6,4b,0 ~A21!

that current density has the form

J5
4

L2
A3 D,

D5exp~22S!,

S5E
0

jo

p~ j̄ ! dj̄5A 1

ubuF uku1 1
2 ~11k2!lnS uk11

uku21D G ,
~A22!

wherejo5min$ujr
ou,ujl

ou%.
Combining Eqs.~A19! and ~A22! we obtain that the ra-

diation rate of the core mass is

dNs

dz
52J,

J5
8

L2
A3 S u~b!expH 2p

11k2

Ab
J

3coshH 2
1

Ab
@k1~11k2!arctan~k!#J

1u~2b!u~Ẍ2L614b!

3expH 22A 2

ubuF uku1 1
2 ~11k2!lnS uku11

uku21D G J D ,

~A23!

whereu(x) is the Heaviside step function. Expression~A23!
may be significantly simplified for limiting cases:

J5
8

L2
A335 expS 2

p

Ab
D if 2b/L3@uẌu

expS 2
4

3

2

uẌL3u
D if 2 ubu/L3!uẌu.

Thus, the radiation rate is controlled by two inertia forces: by
the centrifugal forceb/L3 and by the inertia force caused by
the accelerated center-of-mass motionẌ.
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