104 research outputs found

    Effective sigma models and lattice Ward identities

    Full text link
    We perform a lattice analysis of the Faddeev-Niemi effective action conjectured to describe the low-energy sector of SU(2) Yang-Mills theory. To this end we generate an ensemble of unit vector fields ("color spins") n from the Wilson action. The ensemble does not show long-range order but exhibits a mass gap of the order of 1 GeV. From the distribution of color spins we reconstruct approximate effective actions by means of exact lattice Schwinger-Dyson and Ward identities ("inverse Monte Carlo"). We show that the generated ensemble cannot be recovered from a Faddeev-Niemi action, modified in a minimal way by adding an explicit symmetry-breaking term to avoid the appearance of Goldstone modes.Comment: 25 pages, 17 figures, JHEP styl

    PT Symmetry and QCD: Finite Temperature and Density

    No full text
    The relevance of PT symmetry to quantum chromodynamics (QCD), the gauge theory of the strong interactions, is explored in the context of finite temperature and density. Two significant problems in QCD are studied: the sign problem of finite-density QCD, and the problem of confinement. It is proven that the effective action for heavy quarks at finite density is PT-symmetric. For the case of 1+1 dimensions, the PT-symmetric Hamiltonian, although not Hermitian, has real eigenvalues for a range of values of the chemical potential μ, solving the sign problem for this model. The effective action for heavy quarks is part of a potentially large class of generalized sine-Gordon models which are non-Hermitian but are PT-symmetric. Generalized sine-Gordon models also occur naturally in gauge theories in which magnetic monopoles lead to confinement. We explore gauge theories where monopoles cause confinement at arbitrarily high temperatures. Several different classes of monopole gases exist, with each class leading to different string tension scaling laws. For one class of monopole gas models, the PT-symmetric affine Toda field theory emerges naturally as the effective theory. This in turn leads to sine-law scaling for string tensions, a behavior consistent with lattice simulations

    Index theorem for topological excitations on R^3 * S^1 and Chern-Simons theory

    Full text link
    We derive an index theorem for the Dirac operator in the background of various topological excitations on an R^3 \times S^1 geometry. The index theorem provides more refined data than the APS index for an instanton on R^4 and reproduces it in decompactification limit. In the R^3 limit, it reduces to the Callias index theorem. The index is expressed in terms of topological charge and the eta-invariant associated with the boundary Dirac operator. Neither topological charge nor eta-invariant is typically an integer, however, the non-integer parts cancel to give an integer-valued index. Our derivation is based on axial current non-conservation--an exact operator identity valid on any four-manifold--and on the existence of a center symmetric, or approximately center symmetric, boundary holonomy (Wilson line). We expect the index theorem to usefully apply to many physical systems of interest, such as low temperature (large S^1, confined) phases of gauge theories, center stabilized Yang-Mills theories with vector-like or chiral matter (at S^1 of any size), and supersymmetric gauge theories with supersymmetry-preserving boundary conditions (also at any S^1). In QCD-like and chiral gauge theories, the index theorem should shed light into the nature of topological excitations responsible for chiral symmetry breaking and the generation of mass gap in the gauge sector. We also show that imposing chirally-twisted boundary condition in gauge theories with fermions induces a Chern-Simons term in the infrared. This suggests that some QCD-like gauge theories should possess components with a topological Chern-Simons phase in the small S^1 regime.Comment: 29 pages, refs added, published versio

    Critical Temperature of the Deconfining Phase Transition in (2+1)d Georgi-Glashow Model

    Full text link
    We find the temperature of the phase transition in the (2+1)d Georgi-Glashow model. The critical temperature is shown to depend on the gauge coupling and on the ratio of Higgs and gauge boson masses. In the BPS limit of light Higgs the previous result by Dunne, Kogan, Kovner, and Tekin is reproduced.Comment: 17 pages, 3 figures, REVTeX

    Chiral gauge dynamics and dynamical supersymmetry breaking

    Full text link
    We study the dynamics of a chiral SU(2) gauge theory with a Weyl fermion in the I=3/2 representation and of its supersymmetric generalization. In the former, we find a new and exotic mechanism of confinement, induced by topological excitations that we refer to as magnetic quintets. The supersymmetric version was examined earlier in the context of dynamical supersymmetry breaking by Intriligator, Seiberg, and Shenker, who showed that if this gauge theory confines at the origin of moduli space, one may break supersymmetry by adding a tree level superpotential. We examine the dynamics by deforming the theory on S^1 x R^3, and show that the infrared behavior of this theory is an interacting CFT at small S^1. We argue that this continues to hold at large S^1, and if so, that supersymmetry must remain unbroken. Our methods also provide the microscopic origin of various superpotentials in SQCD on S^1 x R^3 - which were previously obtained by using symmetry and holomorphy - and resolve a long standing interpretational puzzle concerning a flux operator discovered by Affleck, Harvey, and Witten. It is generated by a topological excitation, a "magnetic bion", whose stability is due to fermion pair exchange between its constituents. We also briefly comment on composite monopole operators as leading effects in two dimensional anti-ferromagnets.Comment: 30 pages, 5 figure

    Conformality or confinement: (IR)relevance of topological excitations

    Full text link
    We study aspects of the conformality to confinement transition for non-supersymmetric Yang-Mills theories with fermions in arbitrary chiral or vectorlike representations. We use the presence or absence of mass gap for gauge fluctuations as an identifier of the infrared behavior. Present-day understanding does not allow the mass gap for gauge fluctuations to be computed on R*4. However, recent progress allows its non-perturbative computation on R*3xS*1 by using either the twisted partition function or deformation theory, for a range of S*1 sizes depending on the theory. For small number of fermions, Nf, we show that the mass gap increases with increasing radius, due to the non-dilution of monopoles and bions, the topological excitations relevant for confinement on R*3xS*1. For sufficiently large Nf, we show that the mass gap decreases with increasing radius. In a class of theories, we claim that the decompactification limit can be taken while remaining within the region of validity of semi-classical techniques, giving the first examples of semiclassically solvable Yang-Mills theories at any size S*1. For general non-supersymmetric vectorlike or chiral theories, we conjecture that the change in the behavior of the mass gap on R*3xS*1 as a function of the radius occurs near the lower boundary of the conformal window and give non-perturbative estimates of its value. For vectorlike theories, we compare our estimates of the conformal window with existing lattice results, truncations of the Schwinger-Dyson equations, NSVZ beta function-inspired estimates, and degree of freedom counting criteria. For multi-generation chiral gauge theories, to the best of our knowledge, our estimates of the conformal window are the only known ones.Comment: 40 pages, 3 figures; modified various comments, reference adde

    Z_3 Quantum Criticality in a spin-1/2 chain model

    Full text link
    The stability of the magnetization m=1/3m=1/3 plateau phase of the XXZ spin-1/2 Heisenberg chain with competing interactions is investigated upon switching on a staggered transverse magnetic field. Within a bosonization approach, it is shown that the low-energy properties of the model are described by an effective two-dimensional XY model in a three-fold symmetry-breaking field. A phase transition in the three-state Potts universality class is expected separating the m=1/3m=1/3 plateau phase to a phase where the spins are polarized along the staggered magnetic field. The Z3_3 critical properties of the transition are determined within the bosonization approach.Comment: 5 pages, revised versio

    Forced oscillations in a hydrodynamical accretion disk and QPOs

    Full text link
    This is the second of a series of papers aimed to look for an explanation on the generation of high frequency quasi-periodic oscillations (QPOs) in accretion disks around neutron star, black hole, and white dwarf binaries. The model is inspired by the general idea of a resonance mechanism in the accretion disk oscillations as was already pointed out by Abramowicz & Klu{\'z}niak (\cite{Abramowicz2001}). In a first paper (P\'etri \cite{Petri2005a}, paper I), we showed that a rotating misaligned magnetic field of a neutron star gives rise to some resonances close to the inner edge of the accretion disk. In this second paper, we suggest that this process does also exist for an asymmetry in the gravitational potential of the compact object. We prove that the same physics applies, at least in the linear stage of the response to the disturbance in the system. This kind of asymmetry is well suited for neutron stars or white dwarfs possessing an inhomogeneous interior allowing for a deviation from a perfectly spherically symmetric gravitational field. We show by a linear analysis that the disk initially in a cylindrically symmetric stationary state is subject to three kinds of resonances: a corotation resonance, a Lindblad resonance due to a driven force and a parametric sonance. The highest kHz QPOs are then interpreted as the orbital frequency of the disk at locations where the response to the resonances are maximal. It is also found that strong gravity is not required to excite the resonances.Comment: Accepte

    Deconfining Phase Transition as a Matrix Model of Renormalized Polyakov Loops

    Full text link
    We discuss how to extract renormalized from bare Polyakov loops in SU(N) lattice gauge theories at nonzero temperature in four spacetime dimensions. Single loops in an irreducible representation are multiplicatively renormalized without mixing, through a renormalization constant which depends upon both representation and temperature. The values of renormalized loops in the four lowest representations of SU(3) were measured numerically on small, coarse lattices. We find that in magnitude, condensates for the sextet and octet loops are approximately the square of the triplet loop. This agrees with a large NN expansion, where factorization implies that the expectation values of loops in adjoint and higher representations are just powers of fundamental and anti-fundamental loops. For three colors, numerically the corrections to the large NN relations are greatest for the sextet loop, 25\leq 25%; these represent corrections of 1/N\sim 1/N for N=3. The values of the renormalized triplet loop can be described by an SU(3) matrix model, with an effective action dominated by the triplet loop. In several ways, the deconfining phase transition for N=3 appears to be like that in the N=N=\infty matrix model of Gross and Witten.Comment: 24 pages, 7 figures; v2, 27 pages, 12 figures, extended discussion for clarity, results unchange

    System Size and Energy Dependence of Jet-Induced Hadron Pair Correlation Shapes in Cu+Cu and Au+Au Collisions at sqrt(s_NN) = 200 and 62.4 GeV

    Get PDF
    We present azimuthal angle correlations of intermediate transverse momentum (1-4 GeV/c) hadrons from {dijets} in Cu+Cu and Au+Au collisions at sqrt(s_NN) = 62.4 and 200 GeV. The away-side dijet induced azimuthal correlation is broadened, non-Gaussian, and peaked away from \Delta\phi=\pi in central and semi-central collisions in all the systems. The broadening and peak location are found to depend upon the number of participants in the collision, but not on the collision energy or beam nuclei. These results are consistent with sound or shock wave models, but pose challenges to Cherenkov gluon radiation models.Comment: 464 authors from 60 institutions, 6 pages, 3 figures, 2 tables. Submitted to Physical Review Letters. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore