768 research outputs found
Ab initio density functional investigation of B_24 cluster: Rings, Tubes, Planes, and Cages
We investigate the equilibrium geometries and the systematics of bonding in
various isomers of a 24-atom boron cluster using Born-Oppenheimer molecular
dynamics within the framework of density functional theory. The isomers studied
are the rings, the convex and the quasiplanar structures, the tubes and, the
closed structures. A staggered double-ring is found to be the most stable
structure amongst the isomers studied. Our calculations reveal that a 24-atom
boron cluster does form closed 3-d structures. All isomers show staggered
arrangement of nearest neighbor atoms. Such a staggering facilitates
hybridization in boron cluster. A polarization of bonds between the peripheral
atoms in the ring and the planar isomers is also seen. Finally, we discuss the
fusion of two boron icosahedra. We find that the fusion occurs when the
distance between the two icosahedra is less than a critical distance of about
6.5a.u.Comment: 8 pages, 9 figures in jpeg format Editorially approved for
publication in Phys. Rev.
Electrostatic and electrokinetic contributions to the elastic moduli of a driven membrane
We discuss the electrostatic contribution to the elastic moduli of a cell or
artificial membrane placed in an electrolyte and driven by a DC electric field.
The field drives ion currents across the membrane, through specific channels,
pumps or natural pores. In steady state, charges accumulate in the Debye layers
close to the membrane, modifying the membrane elastic moduli. We first study a
model of a membrane of zero thickness, later generalizing this treatment to
allow for a finite thickness and finite dielectric constant. Our results
clarify and extend the results presented in [D. Lacoste, M. Cosentino
Lagomarsino, and J. F. Joanny, Europhys. Lett., {\bf 77}, 18006 (2007)], by
providing a physical explanation for a destabilizing term proportional to
\kps^3 in the fluctuation spectrum, which we relate to a nonlinear ()
electro-kinetic effect called induced-charge electro-osmosis (ICEO). Recent
studies of ICEO have focused on electrodes and polarizable particles, where an
applied bulk field is perturbed by capacitive charging of the double layer and
drives flow along the field axis toward surface protrusions; in contrast, we
predict "reverse" ICEO flows around driven membranes, due to curvature-induced
tangential fields within a non-equilibrium double layer, which hydrodynamically
enhance protrusions. We also consider the effect of incorporating the dynamics
of a spatially dependent concentration field for the ion channels.Comment: 22 pages, 10 figures. Under review for EPJ
Mortality differences among patients with in-hospital ST-elevation myocardial infarction
Background: In-hospital ST-elevation myocardial infarction (STEMI) is associated with a higher mortality rate than out-of-hospital STEMI. Quality measures and universal protocols for treatment of in-hospital STEMI do not exist, likely contributing to delays in recognition and treatment. Hypothesis: To analyze differences in mortality among three subsets of patients who develop in-hospital STEMI. Methods: This was a multicenter, retrospective observational study of patients who developed in-hospital STEMI at six United States medical centers between 2008 and 2017. Patients were stratified into three groups: (1) cardiac, (2) periprocedure, or (3) noncardiac/nonpostprocedure. Outcomes examined include time from electrocardiogram (ECG) acquisition to cardiac catheterization lab arrival (ECG-to-CCL) and survival to discharge. Results: We identified 184 patients with in-hospital STEMI (mean age 68.7 years, 58.7% male). Group 1 (cardiac) patients had a shorter average ECG-to-CCL time (69 minutes) than group 2 (periprocedure, 215 minutes) and group 3 (noncardiac/nonpostprocedure, 199 minutes). Compared to group 1, survival to discharge was lower for group 2 (OR 0.33, P =.102) and group 3 (OR 0.20, P =.016). After adjusting for prespecified covariates, the relationship between group and survival showed a similar trend but did not reach statistical significance. Conclusions: Patients who develop in-hospital STEMI in the context of a preceding procedure or noncardiac illness appear to have longer reperfusion times and higher in-hospital mortality than patients admitted with cardiac diagnoses. Larger studies are warranted to further investigate these observations. Health systems should place an increased emphasis on developing quality metrics and implementing quality improvement initiatives to improve outcomes for in-hospital STEMI
Thermostatistics of deformed bosons and fermions
Based on the q-deformed oscillator algebra, we study the behavior of the mean
occupation number and its analogies with intermediate statistics and we obtain
an expression in terms of an infinite continued fraction, thus clarifying
successive approximations. In this framework, we study the thermostatistics of
q-deformed bosons and fermions and show that thermodynamics can be built on the
formalism of q-calculus. The entire structure of thermodynamics is preserved if
ordinary derivatives are replaced by the use of an appropriate Jackson
derivative and q-integral. Moreover, we derive the most important thermodynamic
functions and we study the q-boson and q-fermion ideal gas in the thermodynamic
limit.Comment: 14 pages, 2 figure
Identification of clonal hematopoiesis mutations in solid tumor patients undergoing unpaired next-generation sequencing assays
Purpose: In this era of precision-based medicine, for optimal patient care, results reported from commercial next-generation sequencing (NGS) assays should adequately reflect the burden of somatic mutations in the tumor being sequenced. Here, we sought to determine the prevalence of clonal hematopoiesis leading to possible misattribution of tumor mutation calls on unpaired Foundation Medicine NGS assays. Experimental Design: This was a retrospective cohort study of individuals undergoing NGS of solid tumors from two large cancer centers. We identified and quantified mutations in genes known to be frequently altered in clonal hematopoiesis (DNMT3A, TET2, ASXL1, TP53, ATM, CHEK2, SF3B1, CBL, JAK2) that were returned to physicians on clinical Foundation Medicine reports. For a subset of patients, we explored the frequency of true clonal hematopoiesis by comparing mutations on Foundation Medicine reports with matched blood sequencing. Results: Mutations in genes that are frequently altered in clonal hematopoiesis were identified in 65% (1,139/1,757) of patients undergoing NGS. When excluding TP53, which is often mutated in solid tumors, these events were still seen in 35% (619/1,757) of patients. Utilizing paired blood specimens, we were able to confirm that 8% (18/226) of mutations reported in these genes were true clonal hematopoiesis events. The majority of DNMT3A mutations (64%, 7/11) and minority of TP53 mutations (4%, 2/50) were clonal hematopoiesis. Conclusions: Clonal hematopoiesis mutations are commonly reported on unpaired NGS testing. It is important to recognize clonal hematopoiesis as a possible cause of misattribution of mutation origin when applying NGS findings to a patient's care
Longitudinal double-spin asymmetry and cross section for inclusive neutral pion production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV
We report a measurement of the longitudinal double-spin asymmetry A_LL and
the differential cross section for inclusive Pi0 production at midrapidity in
polarized proton collisions at sqrt(s) = 200 GeV. The cross section was
measured over a transverse momentum range of 1 < p_T < 17 GeV/c and found to be
in good agreement with a next-to-leading order perturbative QCD calculation.
The longitudinal double-spin asymmetry was measured in the range of 3.7 < p_T <
11 GeV/c and excludes a maximal positive gluon polarization in the proton. The
mean transverse momentum fraction of Pi0's in their parent jets was found to be
around 0.7 for electromagnetically triggered events.Comment: 6 pages, 3 figures, submitted to Phys. Rev. D (RC
Single Spin Asymmetry in Polarized Proton-Proton Elastic Scattering at GeV
We report a high precision measurement of the transverse single spin
asymmetry at the center of mass energy GeV in elastic
proton-proton scattering by the STAR experiment at RHIC. The was measured
in the four-momentum transfer squared range \GeVcSq, the region of a significant interference between the
electromagnetic and hadronic scattering amplitudes. The measured values of
and its -dependence are consistent with a vanishing hadronic spin-flip
amplitude, thus providing strong constraints on the ratio of the single
spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated
by the Pomeron amplitude at this , we conclude that this measurement
addresses the question about the presence of a hadronic spin flip due to the
Pomeron exchange in polarized proton-proton elastic scattering.Comment: 12 pages, 6 figure
The treatment of polycythaemia vera: an update in the JAK2 era
The clinical course of polycythaemia vera is marked by a high incidence of thrombotic complications, which represent the main cause of morbidity and mortality. Major predictors of vascular events are increasing age and previous thrombosis. Myelosuppressive drugs can reduce the rate of thrombosis, but there is concern that their use raises the risk of transformation into acute leukaemia. To tackle this dilemma, a risk-oriented management strategy is recommended. Low-risk patients should be treated with phlebotomy and low-dose aspirin. Cytotoxic therapy is indicated in high-risk patients, with the drug of choice being hydroxyurea because its leukaemogenicity is low. The recent discovery of JAK2 V617F mutation in the vast majority of polycythaemia vera patients opens new avenues for the treatment of this disease. Novel therapeutic options theoretically devoid of leukaemic risk, such as alpha-interferon and imatinib, affect JAK2 expression in some patients. Nevertheless, these drugs require further clinical experience and, for the time being, should be reserved for selected cases
High non-photonic electron production in + collisions at = 200 GeV
We present the measurement of non-photonic electron production at high
transverse momentum ( 2.5 GeV/) in + collisions at
= 200 GeV using data recorded during 2005 and 2008 by the STAR
experiment at the Relativistic Heavy Ion Collider (RHIC). The measured
cross-sections from the two runs are consistent with each other despite a large
difference in photonic background levels due to different detector
configurations. We compare the measured non-photonic electron cross-sections
with previously published RHIC data and pQCD calculations. Using the relative
contributions of B and D mesons to non-photonic electrons, we determine the
integrated cross sections of electrons () at 3 GeV/10 GeV/ from bottom and charm meson decays to be = 4.0({\rm
stat.})({\rm syst.}) nb and =
6.2({\rm stat.})({\rm syst.}) nb, respectively.Comment: 17 pages, 17 figure
- …