177 research outputs found

    The contents and forms of solid-phase species of radioactive strontium and cesium in Taiwan soils

    Get PDF
    This study was to investigate the activities and contents of Cs-137 in the profiles of selected arable and forest soils in Taiwan and various solid-phase species of Sr-85 and Cs-137 in selected arable soils in Taiwan. The gamma (gamma) ray spectra of the collected soil samples and some of the soils amended with Sr-85 and Cs-137 were measured. The data indicate that the arable soils from Sanhsing series, Sanhsing Township and Chuangwei series, Chuangwei Township, Ilan County, and from Tunglochuan series, Pinglin Township, Taipei County shows significantly higher radioactivity of Cs-137 ( ND - 11.0 +/- 0.2 Bq kg(-1)). Furthermore, the radioactivity of Cs-137 in the mountain soils ( 1.24 +/- 0.07 - 42 +/- 1 Bq kg(-1)) from Yuanyang Lake Nature Preserve among Ilan, Taoyuan, and Hsinchu Counties is the highest among the investigated mountain forest soils. This may be mainly attributed to the fact that Ilan County is located in the northeastern part of Taiwan and faces the northeastern and northern seasonal winds with lots of precipitation annually from mid-autumn through mid-spring next year and is receiving greater amount of fallouts yearly. Due to longer reaction period (> 3 y) of Cs-137 with soil components, Cs-137 was mainly in the forms bound to oxides and to organic matter in the soil amended with Cs-137 and in the soil contaminated with Cs-137. On the contrary, due to shorter reaction period (< 60 d) of Sr-85 with soil components, Sr-85 was mainly in exchangeable form and partially in the forms bound to carbonates and oxides in the soils amended with Sr-85

    Neural networks impedance control of robots interacting with environments

    Get PDF
    In this paper, neural networks impedance control is proposed for robot-environment interaction. Iterative learning control is developed to make the robot dynamics follow a given target impedance model. To cope with the problem of unknown robot dynamics, neural networks are employed such that neither the robot structure nor the physical parameters are required for the control design. The stability and performance of the resulted closed-loop system are discussed through rigorous analysis and extensive remarks. The validity and feasibility of the proposed method are verified through simulation studies

    Carrier relaxation, pseudogap, and superconducting gap in high-Tc cuprates: A Raman scattering study

    Full text link
    We describe results of electronic Raman-scattering experiments in differently doped single crystals of Y-123 and Bi-2212. The comparison of AF insulating and metallic samples suggests that at least the low-energy part of the spectra originates predominantly from excitations of free carriers. We therefore propose an analysis of the data in terms of a memory function approach. Dynamical scattering rates and mass-enhancement factors for the carriers are obtained. In B2g symmetry the Raman data compare well to the results obtained from ordinary and optical transport. For underdoped materials the dc scattering rates in B1g symmetry become temperature independent and considerably larger than in B2g symmetry. This increasing anisotropy is accompanied by a loss of spectral weight in B2g symmetry in the range between the superconducting transition at Tc and a characteristic temperature T* of order room temperature which compares well with the pseudogap temperature found in other experiments. The energy range affected by the pseudogap is doping and temperature independent. The integrated spectral loss is approximately 25% in underdoped samples and becomes much weaker towards higher carrier concentration. In underdoped samples, superconductivity related features in the spectra can be observed only in B2g symmetry. The peak frequencies scale with Tc. We do not find a direct relation between the pseudogap and the superconducting gap.Comment: RevTeX, 21 pages, 24 gif figures. For PostScript with embedded eps figures, see http://www.wmi.badw-muenchen.de/~opel/k2.htm

    Anomalous Heat Conduction and Anomalous Diffusion in Low Dimensional Nanoscale Systems

    Full text link
    Thermal transport is an important energy transfer process in nature. Phonon is the major energy carrier for heat in semiconductor and dielectric materials. In analogy to Ohm's law for electrical conductivity, Fourier's law is a fundamental rule of heat transfer in solids. It states that the thermal conductivity is independent of sample scale and geometry. Although Fourier's law has received great success in describing macroscopic thermal transport in the past two hundreds years, its validity in low dimensional systems is still an open question. Here we give a brief review of the recent developments in experimental, theoretical and numerical studies of heat transport in low dimensional systems, include lattice models, nanowires, nanotubes and graphenes. We will demonstrate that the phonon transports in low dimensional systems super-diffusively, which leads to a size dependent thermal conductivity. In other words, Fourier's law is breakdown in low dimensional structures

    Body appreciation around the world: Measurement invariance of the Body Appreciation Scale-2 (BAS-2) across 65 nations, 40 languages, gender identities, and age.

    Get PDF
    The Body Appreciation Scale-2 (BAS-2) is a widely used measure of a core facet of the positive body image construct. However, extant research concerning measurement invariance of the BAS-2 across a large number of nations remains limited. Here, we utilised the Body Image in Nature (BINS) dataset - with data collected between 2020 and 2022 - to assess measurement invariance of the BAS-2 across 65 nations, 40 languages, gender identities, and age groups. Multi-group confirmatory factor analysis indicated that full scalar invariance was upheld across all nations, languages, gender identities, and age groups, suggesting that the unidimensional BAS-2 model has widespread applicability. There were large differences across nations and languages in latent body appreciation, while differences across gender identities and age groups were negligible-to-small. Additionally, greater body appreciation was significantly associated with higher life satisfaction, being single (versus being married or in a committed relationship), and greater rurality (versus urbanicity). Across a subset of nations where nation-level data were available, greater body appreciation was also significantly associated with greater cultural distance from the United States and greater relative income inequality. These findings suggest that the BAS-2 likely captures a near-universal conceptualisation of the body appreciation construct, which should facilitate further cross-cultural research. [Abstract copyright: Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved.

    Alignment of the CMS silicon tracker during commissioning with cosmic rays

    Get PDF
    This is the Pre-print version of the Article. The official published version of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe CMS silicon tracker, consisting of 1440 silicon pixel and 15 148 silicon strip detector modules, has been aligned using more than three million cosmic ray charged particles, with additional information from optical surveys. The positions of the modules were determined with respect to cosmic ray trajectories to an average precision of 3–4 microns RMS in the barrel and 3–14 microns RMS in the endcap in the most sensitive coordinate. The results have been validated by several studies, including laser beam cross-checks, track fit self-consistency, track residuals in overlapping module regions, and track parameter resolution, and are compared with predictions obtained from simulation. Correlated systematic effects have been investigated. The track parameter resolutions obtained with this alignment are close to the design performance.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)
    corecore