50 research outputs found

    Twisting K3 x T^2 Orbifolds

    Get PDF
    We construct a class of geometric twists of Calabi-Yau manifolds of Voisin-Borcea type (K3 x T^2)/Z_2 and study the superpotential in a type IIA orientifold based on this geometry. The twists modify the direct product by fibering the K3 over T^2 while preserving the Z_2 involution. As an important application, the Voisin-Borcea class contains T^6/(Z_2 x Z_2), the usual setting for intersecting D6 brane model building. Past work in this context considered only those twists inherited from T^6, but our work extends these twists to a subset of the blow-up modes. Our work naturally generalizes to arbitrary K3 fibered Calabi-Yau manifolds and to nongeometric constructions.Comment: 57 pages, 4 figures; uses harvmac.tex, amssym.tex; v3: minor corrections, references adde

    Massive IIA flux compactifications and U-dualities

    Get PDF
    We attempt to find a rigorous formulation for the massive type IIA orientifold compactifications of string theory introduced in hep-th/0505160. An approximate double T-duality converts this background into IIA string theory on a twisted torus, but various arguments indicate that the back reaction of the orientifold on this geometry is large. In particular, an AdS calculation of the entropy suggests a scaling appropriate for N M2-branes, in a certain limit of the compactification, though not the one studied in hep-th/0505160. The M-theory lift of this specific regime is not 4 dimensional. We suggest that the generic limit of the background corresponds to a situation analogous to F-theory, where the string coupling is small in some regions of a compact geometry, and large in others, so that neither a long wavelength 11D SUGRA expansion, nor a world sheet expansion exists for these compactifications. We end with a speculation on the nature of the generic compactification.Comment: JHEP3 LaTeX - 34 pages - 3 figures; v2: Added references; v3: mistake in entropy scaling corrected, major changes in conclusions; v4: changed claims about original DeWolfe et al. setup, JHEP versio

    Matter wave functions and Yukawa couplings in F-theory Grand Unification

    Get PDF
    We study the local structure of zero mode wave functions of chiral matter fields in F-theory unification. We solve the differential equations for the zero modes derived from local Higgsing in the 8-dimensional parent action of F-theory 7-branes. The solutions are found as expansions both in powers and derivatives of the magnetic fluxes. Yukawa couplings are given by an overlap integral of the three wave functions involved in the interaction and can be calculated analytically. We provide explicit expressions for these Yukawas to second order both in the flux and derivative expansions and discuss the effect of higher order terms. We explicitly describe the dependence of the couplings on the U(1) charges of the relevant fields, appropriately taking into account their normalization. A hierarchical Yukawa structure is naturally obtained. The application of our results to the understanding of the observed hierarchies of quarks and leptons is discussed.Comment: Latex, 51 pages, 4 figures, typos corrected, note adde

    Nongeometric Flux Compactifications

    Full text link
    We investigate a simple class of type II string compactifications which incorporate nongeometric "fluxes" in addition to "geometric flux" and the usual H-field and R-R fluxes. These compactifications are nongeometric analogues of the twisted torus. We develop T-duality rules for NS-NS geometric and nongeometric fluxes, which we use to construct a superpotential for the dimensionally reduced four-dimensional theory. The resulting structure is invariant under T-duality, so that the distribution of vacua in the IIA and IIB theories is identical when nongeometric fluxes are included. This gives a concrete framework in which to investigate the possibility that generic string compactifications may be nongeometric in any duality frame. The framework developed in this paper also provides some concrete hints for how mirror symmetry can be generalized to compactifications with arbitrary H-flux, whose mirrors are generically nongeometric.Comment: 26 pages, JHEP3. v3: references, minor corrections, and clarifications added. v4: sign correcte

    Protocol for tool wear measurement in micro-milling

    Get PDF
    Micro-milling yields small accurate parts quickly for electromechanical, aerospace, and medical applications. Due to their small size, micro-tools wear quickly and unpredictably therefore tool wear is difficult to measure and is poorly understood, leading to excessive tool changes and reduced productivity. This paper, therefore, proposes a new protocol for micro-tool wear measurement to overcome these problems. A strict set of criteria as found in an ISO standard is impractical for micro-milling research. The method herein allows comparisons to be made across materials and situations and detailed are certain criteria that must be fulfilled to achieve this. To evaluate the protocol micro-tools were used to machine three materials: brass, titanium and Hastelloy; and wear curves produced. Using the described protocol, these wear curves can be analysed similarly to those for larger tools. Profile analysis of the slots machined provides valuable information about tool wear where direct measurement is impossible. This new protocol presents a novel method for analysing and reporting tool wear for micro-end-mills, allowing them to be compared under different machining conditions and/or milling different materials, something not afforded by existing machining standards. The information can then be transferred to industrial applications, extending tool life and improving process efficiency

    Fetal brain tissue annotation and segmentation challenge results.

    Get PDF
    In-utero fetal MRI is emerging as an important tool in the diagnosis and analysis of the developing human brain. Automatic segmentation of the developing fetal brain is a vital step in the quantitative analysis of prenatal neurodevelopment both in the research and clinical context. However, manual segmentation of cerebral structures is time-consuming and prone to error and inter-observer variability. Therefore, we organized the Fetal Tissue Annotation (FeTA) Challenge in 2021 in order to encourage the development of automatic segmentation algorithms on an international level. The challenge utilized FeTA Dataset, an open dataset of fetal brain MRI reconstructions segmented into seven different tissues (external cerebrospinal fluid, gray matter, white matter, ventricles, cerebellum, brainstem, deep gray matter). 20 international teams participated in this challenge, submitting a total of 21 algorithms for evaluation. In this paper, we provide a detailed analysis of the results from both a technical and clinical perspective. All participants relied on deep learning methods, mainly U-Nets, with some variability present in the network architecture, optimization, and image pre- and post-processing. The majority of teams used existing medical imaging deep learning frameworks. The main differences between the submissions were the fine tuning done during training, and the specific pre- and post-processing steps performed. The challenge results showed that almost all submissions performed similarly. Four of the top five teams used ensemble learning methods. However, one team's algorithm performed significantly superior to the other submissions, and consisted of an asymmetrical U-Net network architecture. This paper provides a first of its kind benchmark for future automatic multi-tissue segmentation algorithms for the developing human brain in utero

    Seeing through the String Landscape - a String Hunter's Companion in Particle Physics and Cosmology

    Full text link
    In this article we will overview several aspects of the string landscape, namely intersecting D-brane models and their statistics, possible model independent LHC signatures of intersecting brane models, flux compactification, moduli stabilization in type II compactifications, domain wall solutions and brane inflation.Comment: 94 pages, Review paper invited and accepted for publication by JHEP, revised version contains several new references and other minor modification

    Quorum sensing:Implications on rhamnolipid biosurfactant production

    Get PDF

    NEOTROPICAL XENARTHRANS: a data set of occurrence of xenarthran species in the Neotropics

    Get PDF
    Xenarthrans – anteaters, sloths, and armadillos – have essential functions for ecosystem maintenance, such as insect control and nutrient cycling, playing key roles as ecosystem engineers. Because of habitat loss and fragmentation, hunting pressure, and conflicts with 24 domestic dogs, these species have been threatened locally, regionally, or even across their full distribution ranges. The Neotropics harbor 21 species of armadillos, ten anteaters, and six sloths. Our dataset includes the families Chlamyphoridae (13), Dasypodidae (7), Myrmecophagidae (3), Bradypodidae (4), and Megalonychidae (2). We have no occurrence data on Dasypus pilosus (Dasypodidae). Regarding Cyclopedidae, until recently, only one species was recognized, but new genetic studies have revealed that the group is represented by seven species. In this data-paper, we compiled a total of 42,528 records of 31 species, represented by occurrence and quantitative data, totaling 24,847 unique georeferenced records. The geographic range is from the south of the USA, Mexico, and Caribbean countries at the northern portion of the Neotropics, to its austral distribution in Argentina, Paraguay, Chile, and Uruguay. Regarding anteaters, Myrmecophaga tridactyla has the most records (n=5,941), and Cyclopes sp. has the fewest (n=240). The armadillo species with the most data is Dasypus novemcinctus (n=11,588), and the least recorded for Calyptophractus retusus (n=33). With regards to sloth species, Bradypus variegatus has the most records (n=962), and Bradypus pygmaeus has the fewest (n=12). Our main objective with Neotropical Xenarthrans is to make occurrence and quantitative data available to facilitate more ecological research, particularly if we integrate the xenarthran data with other datasets of Neotropical Series which will become available very soon (i.e. Neotropical Carnivores, Neotropical Invasive Mammals, and Neotropical Hunters and Dogs). Therefore, studies on trophic cascades, hunting pressure, habitat loss, fragmentation effects, species invasion, and climate change effects will be possible with the Neotropical Xenarthrans dataset
    corecore