16 research outputs found

    PADC nuclear track detector for ion spectroscopy in laser-plasma acceleration

    Full text link
    [EN] The transparent polymer polyallyl-diglycol-carbonate (PADC), also known as CR-39, is widely used as detector for heavy charged particles at low fluence. It allows for detection of single protons and ions via formation of microscopic tracks after etching in NaOH or KOH solutions. PADC combines a high sensitivity and high specificity with inertness towards electromagnetic noise. Present fields of application include laser-ion acceleration, inertial confinement fusion, radiobiological studies with cell cultures, and dosimetry of nuclear fragments in particle therapy. These require precise knowledge of the energy-dependent response of PADC to different ion species. We present calibration data for a new type of detector material, Radosys RS39, to protons (0.2-3 MeV) and carbon ions (0.6-12 MeV). RS39 is less sensitive to protons than other types of PADC. Its response to carbon ions, however, is similar to other materials. Our data indicate that RS39 allows for measuring carbon ion energies up to 10 MeV only from the track diameters. In addition, it can be used for discrimination between protons and carbon ions in a single etching process.Project funded by CSIC, Grant No. 2018501082, and by the Spanish Ministerio de Ciencia, Innovacion y Universidades, project MdM-2016-0692-17-2 via a predoctoral grant of type Maria de Maeztu FPI. Nuclear track detector material and readout equipment have been provided by Radosys Ldt. (Budapest). The authors acknowledge the contributions and commitment of the CNA accelerator operators. MS would like to thank L. Ballesteros and J. Ortiz for their support with precision equipment.Seimetz, M.; Peñas, J.; Llerena, JJ.; Benlliure, J.; García López, J.; Millán-Callado, MA.; Benlloch Baviera, JM. (2020). PADC nuclear track detector for ion spectroscopy in laser-plasma acceleration. Physica Medica. 76:72-76. https://doi.org/10.1016/j.ejmp.2020.06.005S727676Kodaira, S., Kitamura, H., Kurano, M., Kawashima, H., & Benton, E. R. (2019). Contribution to dose in healthy tissue from secondary target fragments in therapeutic proton, He and C beams measured with CR-39 plastic nuclear track detectors. Scientific Reports, 9(1). doi:10.1038/s41598-019-39598-0Scampoli, P., Casale, M., Durante, M., Grossi, G., Pugliese, M., & Gialanella, G. (2001). Low-energy light ion irradiation beam-line for radiobiological studies. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 174(3), 337-343. doi:10.1016/s0168-583x(00)00622-4WADA, S., KOBAYASHI, Y., FUNAYAMA, T., NATSUHORI, M., ITO, N., & YAMAMOTO, K. (2002). Detection of DNA Damage in Individual Cells Induced by Heavy-ion Irradiation with an Non-denaturing Comet Assay. Journal of Radiation Research, 43(S), S153-S156. doi:10.1269/jrr.43.s153Gaillard, S., Pusset, D., de Toledo, S. M., Azzam, E. I., & Fromm, M. (2008). Distance distribution of bystander effects in alpha-particle irradiated cell populations using a CR-39-based culture dish. Radiation Measurements, 43, S34-S40. doi:10.1016/j.radmeas.2008.03.063Yogo, A., Maeda, T., Hori, T., Sakaki, H., Ogura, K., Nishiuchi, M., … Kondo, K. (2011). Measurement of relative biological effectiveness of protons in human cancer cells using a laser-driven quasimonoenergetic proton beamline. Applied Physics Letters, 98(5), 053701. doi:10.1063/1.3551623Séguin, F. H., Frenje, J. A., Li, C. K., Hicks, D. G., Kurebayashi, S., Rygg, J. R., … Padalino, S. (2003). Spectrometry of charged particles from inertial-confinement-fusion plasmas. Review of Scientific Instruments, 74(2), 975-995. doi:10.1063/1.1518141Daido, H., Nishiuchi, M., & Pirozhkov, A. S. (2012). Review of laser-driven ion sources and their applications. Reports on Progress in Physics, 75(5), 056401. doi:10.1088/0034-4885/75/5/056401Sinenian, N., Rosenberg, M. J., Manuel, M., McDuffee, S. C., Casey, D. T., Zylstra, A. B., … Petrasso, R. D. (2011). The response of CR-39 nuclear track detector to 1–9 MeV protons. Review of Scientific Instruments, 82(10), 103303. doi:10.1063/1.3653549Malinowska A, Szydłowski A, Jaskóła M, Korman A, Sartowska B, Kuehn T, Kuk M. Investigations of protons passing through the CR-39/PM-355 type of solid state nuclear track detectors, Rev Sci Instrum 84 (2013) 073511.Baccou, C., Yahia, V., Depierreux, S., Neuville, C., Goyon, C., Consoli, F., … Labaune, C. (2015). CR-39 track detector calibration for H, He, and C ions from 0.1-0.5 MeV up to 5 MeV for laser-induced nuclear fusion product identification. Review of Scientific Instruments, 86(8), 083307. doi:10.1063/1.4927684Seimetz, M., Bellido, P., García, P., Mur, P., Iborra, A., Soriano, A., … Benlloch, J. M. (2018). Spectral characterization of laser-accelerated protons with CR-39 nuclear track detector. Review of Scientific Instruments, 89(2), 023302. doi:10.1063/1.5009587Xiaojiao, D., Xiaofei, L., Zhixin, T., Yongsheng, H., Shilun, G., Dawei, Y., & Naiyan, W. (2009). Calibration of CR-39 with monoenergetic protons. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 609(2-3), 190-193. doi:10.1016/j.nima.2009.08.061Kodaira, S., Morishige, K., Kawashima, H., Kitamura, H., Kurano, M., Hasebe, N., … Ogura, K. (2016). A performance test of a new high-surface-quality and high-sensitivity CR-39 plastic nuclear track detector – TechnoTrak. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 383, 129-135. doi:10.1016/j.nimb.2016.07.002Ogura, K., Asano, M., Yasuda, N., & Yoshida, M. (2001). Properties of TNF-1 track etch detector. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 185(1-4), 222-227. doi:10.1016/s0168-583x(01)00816-3Malinowska, A., Jaskóła, M., Korman, A., Szydłowski, A., & Kuk, M. (2014). Characterization of solid state nuclear track detectors of the polyallyl-diglycol-carbonate (CR-39/PM-355) type for light charged particle spectroscopy. Review of Scientific Instruments, 85(12), 123505. doi:10.1063/1.4903755Bahrami, F., Mianji, F., Faghihi, R., Taheri, M., & Ansarinejad, A. (2016). Response of CR-39 to 0.9–2.5 MeV protons for KOH and NaOH etching solutions. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 813, 96-101. doi:10.1016/j.nima.2016.01.015Jeong, T. W., Singh, P. K., Scullion, C., Ahmed, H., Hadjisolomou, P., Jeon, C., … Ter-Avetisyan, S. (2017). CR-39 track detector for multi-MeV ion spectroscopy. Scientific Reports, 7(1). doi:10.1038/s41598-017-02331-wKanasaki, M., Hattori, A., Sakaki, H., Fukuda, Y., Yogo, A., Jinno, S., … Yamauchi, T. (2013). A high energy component of the intense laser-accelerated proton beams detected by stacked CR-39. Radiation Measurements, 50, 46-49. doi:10.1016/j.radmeas.2012.10.009Groza, A., Serbanescu, M., Butoi, B., Stancu, E., Straticiuc, M., Burducea, I., … Ganciu, M. (2019). Advances in Spectral Distribution Assessment of Laser Accelerated Protons using Multilayer CR-39 Detectors. Applied Sciences, 9(10), 2052. doi:10.3390/app9102052Zhang, Y., Wang, H.-W., Ma, Y.-G., Liu, L.-X., Cao, X.-G., Fan, G.-T., … Fang, D.-Q. (2019). Energy calibration of a CR-39 nuclear-track detector irradiated by charged particles. Nuclear Science and Techniques, 30(6). doi:10.1007/s41365-019-0619-xSeimetz, M., Bellido, P., Soriano, A., Garcia Lopez, J., Jimenez-Ramos, M. C., Fernandez, B., … Benlloch, J. M. (2015). Calibration and Performance Tests of Detectors for Laser-Accelerated Protons. IEEE Transactions on Nuclear Science, 62(6), 3216-3224. doi:10.1109/tns.2015.2480682Rana, M. A., & Qureshi, I. . (2002). Studies of CR-39 etch rates. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 198(3-4), 129-134. doi:10.1016/s0168-583x(02)01526-4Hermsdorf, D., Hunger, M., Starke, S., & Weickert, F. (2007). Measurement of bulk etch rates for poly-allyl-diglycol carbonate (PADC) and cellulose nitrate in a broad range of concentration and temperature of NaOH etching solution. Radiation Measurements, 42(1), 1-7. doi:10.1016/j.radmeas.2006.06.009Azooz, A. A., & Al-Jubbori, M. A. (2013). Interrelated temperature dependence of bulk etch rate and track length saturation time in CR-39 detector. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 316, 171-175. doi:10.1016/j.nimb.2013.09.001Jadrníčková I, Spurný F. To the spectrometry of linear energy transfer in charged particle beams by means of track-etch detectors, Radiat Measure 43(2008): S191–S194, proceedings of the 23rd International Conference on Nuclear Tracks in Solids. doi: 10.1016/j.radmeas.2008.04.010.Sadowski, M., Al-Mashhadani, E. M., Szydłowski, A., Czyzewski, T., Głowacka, L., Jaskóła, M., … Wieluński, M. (1995). Comparison of responses of CR-39 and PM-355 track detectors to fast protons, deuterons and 4He ions within energy range 0.2–4.5 MeV. Radiation Measurements, 25(1-4), 175-176. doi:10.1016/1350-4487(95)00066-nSadowski, M., Szydlowski, A., Jaskola, M., Czyzewski, T., & Kobzev, A. P. (1997). Comparison of responses of CR-39, PM-355, and CN track detectors to energetic hydrogen-, helium-, nitrogen-, and oxygen-ions. Radiation Measurements, 28(1-6), 207-210. doi:10.1016/s1350-4487(97)00069-3Henig, A., Steinke, S., Schnürer, M., Sokollik, T., Hörlein, R., Kiefer, D., … Habs, D. (2009). Radiation-Pressure Acceleration of Ion Beams Driven by Circularly Polarized Laser Pulses. Physical Review Letters, 103(24). doi:10.1103/physrevlett.103.245003Kar, S., Kakolee, K. F., Qiao, B., Macchi, A., Cerchez, M., Doria, D., … Borghesi, M. (2012). Ion Acceleration in Multispecies Targets Driven by Intense Laser Radiation Pressure. Physical Review Letters, 109(18). doi:10.1103/physrevlett.109.185006Palaniyappan, S., Huang, C., Gautier, D. C., Hamilton, C. E., Santiago, M. A., Kreuzer, C., … Fernández, J. C. (2015). Efficient quasi-monoenergetic ion beams from laser-driven relativistic plasmas. Nature Communications, 6(1). doi:10.1038/ncomms10170McGuffey, C., Raymond, A., Batson, T., Hua, R., Petrov, G. M., Kim, J., … Beg, F. N. (2016). Acceleration of high charge-state target ions in high-intensity laser interactions with sub-micron targets. New Journal of Physics, 18(11), 113032. doi:10.1088/1367-2630/18/11/113032Ma, W. J., Kim, I. J., Yu, J. Q., Choi, I. W., Singh, P. K., Lee, H. W., … Nam, C. H. (2019). Laser Acceleration of Highly Energetic Carbon Ions Using a Double-Layer Target Composed of Slightly Underdense Plasma and Ultrathin Foil. Physical Review Letters, 122(1). doi:10.1103/physrevlett.122.014803Hegelich, M., Karsch, S., Pretzler, G., Habs, D., Witte, K., Guenther, W., … Roth, M. (2002). MeV Ion Jets from Short-Pulse-Laser Interaction with Thin Foils. Physical Review Letters, 89(8). doi:10.1103/physrevlett.89.085002Henig, A., Kiefer, D., Markey, K., Gautier, D. C., Flippo, K. A., Letzring, S., … Hegelich, B. M. (2009). Enhanced Laser-Driven Ion Acceleration in the Relativistic Transparency Regime. Physical Review Letters, 103(4). doi:10.1103/physrevlett.103.045002Carroll, D. C., Tresca, O., Prasad, R., Romagnani, L., Foster, P. S., Gallegos, P., … McKenna, P. (2010). Carbon ion acceleration from thin foil targets irradiated by ultrahigh-contrast, ultraintense laser pulses. New Journal of Physics, 12(4), 045020. doi:10.1088/1367-2630/12/4/045020Jung, D., Yin, L., Albright, B. J., Gautier, D. C., Letzring, S., Dromey, B., … Hegelich, B. M. (2013). Efficient carbon ion beam generation from laser-driven volume acceleration. New Journal of Physics, 15(2), 023007. doi:10.1088/1367-2630/15/2/023007Dollar, F., Zulick, C., Matsuoka, T., McGuffey, C., Bulanov, S. S., Chvykov, V., … Krushelnick, K. (2013). High contrast ion acceleration at intensities exceeding 1021 Wcm−2. Physics of Plasmas, 20(5), 056703. doi:10.1063/1.4803082Kohno, R., Yasuda, N., Takeshi, H., Kase, Y., Ochiai, K., Komori, M., … Kanai, T. (2005). Measurements of Dose-Averaged Linear Energy Transfer Distributions in Water Using CR-39 Plastic Nuclear Track Detector for Therapeutic Carbon Ion Beams. Japanese Journal of Applied Physics, 44(12), 8722-8726. doi:10.1143/jjap.44.8722Romo, V., Rickards, J., Espinosa, G., & Golzarri, J. I. (1999). The Response of CR-39 Polycarbonate to Energetic Carbon Ions. Radiation Protection Dosimetry, 85(1), 459-461. doi:10.1093/oxfordjournals.rpd.a032897Szydlowski, A., Czyzewski, T., Jaskola, M., Sadowski, M., Korman, A., Kedzierski, J., & Kretschmer, W. (1999). Investigation of response of CR-39, PM-355 and PM-500 types of nuclear track detectors to energetic carbon ions. Radiation Measurements, 31(1-6), 257-260. doi:10.1016/s1350-4487(99)00125-

    Neutron capture measurement at the n TOF facility of the 204Tl and 205Tl s-process branching points

    Get PDF
    Neutron capture cross sections are one of the fundamental nuclear data in the study of the s (slow) process of nucleosynthesis. More interestingly, the competition between the capture and the decay rates in some unstable nuclei determines the local isotopic abundance pattern. Since decay rates are often sensible to temperature and electron density, the study of the nuclear properties of these nuclei can provide valuable constraints to the physical magnitudes of the nucleosynthesis stellar environment. Here we report on the capture cross section measurement of two thallium isotopes, 204Tl and 205Tl performed by the time-of-flight technique at the n TOF facility at CERN. At some particular stellar s-process environments, the decay of both nuclei is strongly enhanced, and determines decisively the abundance of two s-only isotopes of lead, 204Pb and 205Pb. The latter, as a long-lived radioactive nucleus, has potential use as a chronometer of the last s-process events that contributed to final solar isotopic abundances

    80Se(n,γ) cross-section measurement at CERN n TOF

    Get PDF
    Radiative neutron capture cross section measurements are of fundamental importance for the study of the slow neutron capture (s-) process of nucleosynthesis. This mechanism is responsible for the formation of most elements heavier than iron in the Universe. Particularly relevant are branching nuclei along the s-process path, which are sensitive to the physical conditions of the stellar environment. One such example is the branching at 79Se (3.27 × 105 y), which shows a thermally dependent ß-decay rate. However, an astrophysically consistent interpretation requires also the knowledge of the closest neighbour isotopes involved. In particular, the 80Se(n,?) cross section directly affects the stellar yield of the "cold"branch leading to the formation of the s-only 82Kr. Experimentally, there exists only one previous measurement on 80Se using the time of flight (TOF) technique. However, the latter suffers from some limitations that are described in this presentation. These drawbacks have been significantly improved in a recent measurement at CERN n TOF. This contribution presents a summary of the latter measurement and the status of the data analysis

    Production yields of

    Get PDF
    In-vivo Positron Emission Tomography (PET) range verification relies on the comparison of the measured and estimated activity distributions from β+ emitters induced by the proton beam on the most abundant elements in the human body, right after (looking at the long-lived β+ emitters 11C, 13N and 15O) or during (looking at the short-lived β+ emitters 29P, 12N, 38mK and 10C) the irradiation. The accuracy of the estimated activity distributions is basically that of the underlying cross section data. In this context, the aim of this work is to improve the knowledge of the production yields of β+ emitters of interest in proton therapy. In order to measure the long-lived β+ isotopes, a new method has been developed combining the multi-foil technique with the measurement of the induced activity with a clinical PET scanner. This technique has been tested successfully below 18 MeV at CNA (Spain) and will be used at a clinical beam to obtain data up to 230 MeV. However, such method does not allow measuring the production short-lived isotopes (lower half-life). For this, the proposed method combines a series of targets sandwiched between aluminum foils (acting as both degraders and converters) placed between two LaBr3 detectors that will measure the pairs of 511 keV γ-rays. The first tests will take place at the AGOR facility at KVI-CART, in Groningen

    Production yields of + emitters for range verification in proton therapy

    Get PDF
    In-vivo Positron Emission Tomography (PET) range verification relies on the comparison of the measured and estimated activity distributions from β+ emitters induced by the proton beam on the most abundant elements in the human body, right after (looking at the long-lived β+ emitters 11C, 13N and 15O) or during (looking at the short-lived β+ emitters 29P, 12N, 38mK and 10C) the irradiation. The accuracy of the estimated activity distributions is basically that of the underlying cross section data. In this context, the aim of this work is to improve the knowledge of the production yields of β+ emitters of interest in proton therapy. In order to measure the long-lived β+ isotopes, a new method has been developed combining the multi-foil technique with the measurement of the induced activity with a clinical PET scanner. This technique has been tested successfully below 18 MeV at CNA (Spain) and will be used at a clinical beam to obtain data up to 230 MeV. However, such method does not allow measuring the production short-lived isotopes (lower half-life). For this, the proposed method combines a series of targets sandwiched between aluminum foils (acting as both degraders and converters) placed between two LaBr3 detectors that will measure the pairs of 511 keV γ-rays. The first tests will take place at the AGOR facility at KVI-CART, in Groningen

    Laser-driven neutrons for time-of-flight experiments?

    Get PDF
    Neutron beams, both pulsed and continuous, are a powerful tool in a wide variety of research fields and applications. Nowadays, pulsed neutron beams are produced in conventional accelerator facilities in which the time-of-fight technique is used to determine the kinetic energy of the neutrons inducing the reactions of interest. In the last decades, the development of ultra-short (femtosecond) and ultra-high power (> 1018 W/cm2) lasers has opened the door to a vast number of new applications, including the production and acceleration of pulsed ion beams. These have been recently used to produce pulsed neutron beams, reaching fluxes per pulse similar and even higher than those of conventional neutron beams, hence becoming an alternative for the pulsed neutron beam users community. Nevertheless, these laser-driven neutrons have not been exploited in nuclear physics experiments so far. Our main goal is to produce and characterize laser-driven neutrons but optimizing the analysis, diagnostic and detection techniques currently used in conventional neutron sources to implement them in this new environment. As a result, we would lay down the viability of carrying out nuclear physics experiments using this kind of sources by identifying the advantages and limitations of this production method. To achieve this purpose, we plan to perform experiments in both medium (50TW@L2A2, in Santiago de Com-postela) and high (1PW@APOLLON, in Paris) power laser facilities

    Compton Imaging and Machine-Learning techniques for an enhanced sensitivity in key stellar (n,

    No full text
    Neutron capture cross-section measurements are fundamental in the study of astrophysical phenomena, such as the slow neutron capture (s-) process of nucleosynthesis operating in red-giant stars. To enhance the sensitivity of such measurements we have developed the i-TED detector. i-TED is an innovative detection system which exploits the Compton imaging technique with the aim of obtaining information about the incoming direction of the detected γ-rays. The imaging capability allows one to reject a large fraction of the dominant γ-ray background, hence enhancing the (n,γ) detection sensitivity. This work summarizes the main results of the first experimental proof-of-concept of the background rejection with i-TED carried out at CERN n_TOF using an early i-TED demonstrator. Two state-of-the-art C6D6 detectors were also used to benchmark the performance of i-TED. The i-TED prototype built for this study shows a factor of ~3 higher detection sensitivity than C6D6 detectors in the ~10 keV neutron-energy range of astrophysical interest. This works also introduces the perspectives of further enhancement in performance attainable with the final i-TED array and new analysis methodologies based on Machine-Learning techniques. The latter provide higher (n,γ) detection efficiency and similar enhancement in the sensitivity than the analytical method based on the Compton scattering law. Finally, we present our proposal to use this detection system for the first time on key astrophysical (n,γ) measurements, in particular on the s-process branching-point 79Se, which is especially well suited to constrain the thermal conditions of Red Giant and Massive Stars

    First results of the 241^{241}Am(n,f) cross section measurement at the Experimental Area 2 of the n_TOF facility at CERN

    No full text
    International audienceFeasibility, design and sensitivity studies on innovative nuclear reactors that could address the issue of nuclear waste transmutation using fuels enriched in minor actinides, require high accuracy cross section data for a variety of neutron-induced reactions from thermal energies to several tens of MeV. The isotope 241^{241} Am (TT1/2_{1/2} = 433 years) is present in high-level nuclear waste (HLW), representing about 1.8 % of the actinide mass in spent PWR UOx fuel. Its importance increases with cooling time due to additional production from the β\beta-decay of 241^{241}Pu with a half-life of 14.3 years. The production rate of 241^{241}Am in conventional reactors, including its further accumulation through the decay of 241^{241}Pu and its destruction through transmutation/incineration are very important parameters for the design of any recycling solution. In the present work, the 241^{241} Am(n,f) reaction cross-section was measured using Micromegas detectors at the Experimental Area 2 of the n_TOF facility at CERN. For the measurement, the 235^{235}U(n,f) and 238^{238}U(n,f) reference reactions were used for the determination of the neutron flux. In the present work an overview of the experimental setup and the adopted data analysis techniques is given along with preliminary results.</jats:p

    Measurement of the energy-differential cross-section of the 12^{12}C(n,p)12^{12}B and 12^{12}C(n,d)11^{11}B reactions at the n_TOF facility at CERN

    No full text
    International audienceAlthough the 12^{12}C(n,p)12^{12}B and 12^{12}C(n,d)11^{11}B reactions are of interest in several fields of basic and applied Nuclear Physics the present knowledge of these two cross-sections is far from being accurate and reliable, with both evaluations and data showing sizable discrepancies. As part of the challenging n_TOF program on (n,cp) nuclear reactions study, the energy differential cross-sections of the 12^{12}C(n,p)12^{12}B and 12^{12}C(n,d)11^{11}B reactions have been measured at CERN from the reaction thresholds up to 30 MeV neutron energy. Both measurements have been recently performed at the long flight-path (185 m) experimental area of the n_TOF facility at CERN using a pure (99.95%) rigid graphite target and two silicon telescopes. In this paper an overview of the experiment is presented together with a few preliminary results.</jats:p

    Status and perspectives of the neutron time-of-flight facility n_TOF at CERN

    Get PDF
    International audienceSince the start of its operation in 2001, based on an idea of Prof. Carlo Rubbia [1], the neutron time of-flight facility of CERN, n_TOF, has become one of the most forefront neutron facilities in the world for wide-energy spectrum neutron cross section measurements. Thanks to the combination of excellent neutron energy resolution and high instantaneous neutron flux available in the two experimental areas, the second of which has been constructed in 2014, n_TOF is providing a wealth of new data on neutron-induced reactions of interest for nuclear astrophysics, advanced nuclear technologies and medical applications. The unique features of the facility will continue to be exploited in the future, to perform challenging new measurements addressing the still open issues and long-standing quests in the field of neutron physics. In this document the main characteristics of the n_TOF facility and their relevance for neutron studies in the different areas of research will be outlined, addressing the possible future contribution of n_TOF in the fields of nuclear astrophysics, nuclear technologies and medical applications. In addition, the future perspectives of the facility will be described including the upgrade of the spallation target, the setup of an imaging installation and the construction of a new irradiation area.</jats:p
    corecore