71 research outputs found

    Spatial chaos in weakly dispersive and viscous media: a nonperturbative theory of the driven KdV-Burgers equation

    Full text link
    The asymptotic travelling wave solution of the KdV-Burgers equation driven by the long scale periodic driver is constructed. The solution represents a shock-train in which the quasi-periodic sequence of dispersive shocks or soliton chains is interspersed by smoothly varying regions. It is shown that the periodic solution which has the spatial driver period undergoes period doublings as the governing parameter changes. Two types of chaotic behavior are considered. The first type is a weak chaos, where only a small chaotic deviation from the periodic solution occurs. The second type corresponds to the developed chaos where the solution ``ignores'' the driver period and represents a random sequence of uncorrelated shocks. In the case of weak chaos the shock coordinate being repeatedly mapped over the driver period moves on a chaotic attractor, while in the case of developed chaos it moves on a repellor. Both solutions depend on a parameter indicating the reference shock position in the shock-train. The structure of a one dimensional set to which this parameter belongs is investigated. This set contains measure one intervals around the fixed points in the case of periodic or weakly chaotic solutions and it becomes a fractal in the case of strong chaos. The capacity dimension of this set is calculated.Comment: 32 pages, 12 PostScript figures, useses elsart.sty and boxedeps.tex, fig.11 is not included and can be requested from <[email protected]

    UHECR Acceleration in Dark Matter Filaments of Cosmological Structure Formation

    Full text link
    A mechanism for proton acceleration to ~10^21eV is suggested. It may operate in accretion flows onto thin dark matter filaments of cosmic structure formation. The flow compresses the ambient magnetic field to strongly increase and align it with the filament. Particles begin the acceleration by the ExB drift with the accretion flow. The energy gain in the drift regime is limited by the conservation of the adiabatic invariant p_perp^2/B. Upon approaching the filament, the drift turns into the gyro-motion around the filament so that the particle moves parallel to the azimuthal electric field. In this 'betatron' regime the acceleration speeds up to rapidly reach the electrodynamic limit cpmax=eBRcp_{max}=eBR for an accelerator with magnetic field BB and the orbit radius RR (Larmor radius). The periodic orbit becomes unstable and the particle slings out of the filament to the region of a weak (uncompressed) magnetic field, which terminates the acceleration. The mechanism requires pre-acceleration that is likely to occur in structure formation shocks upstream or nearby the filament accretion flow. Previous studies identify such shocks as efficient proton accelerators to a firm upper limit ~10^19.5 eV placed by the catastrophic photo-pion losses. The present mechanism combines explosive energy gain in its final (betatron) phase with prompt particle release from the region of strong magnetic field. It is this combination that allows protons to overcome both the photo-pion and the synchrotron-Compton losses and therefore attain energy 10^21 eV. A requirement on accelerator to reach a given E_max placed by the accelerator energy dissipation \propto E_{max}^{2}/Z_0 due to the finite vacuum impedance Z_0 is circumvented by the cyclic operation of the accelerator.Comment: 34 pages, 10 figures, to be published in JCA

    Cosmic-ray acceleration in supernova remnants: non-linear theory revised

    Full text link
    A rapidly growing amount of evidences, mostly coming from the recent gamma-ray observations of Galactic supernova remnants (SNRs), is seriously challenging our understanding of how particles are accelerated at fast shocks. The cosmic-ray (CR) spectra required to account for the observed phenomenology are in fact as steep as E2.2E2.4E^{-2.2}--E^{-2.4}, i.e., steeper than the test-particle prediction of first-order Fermi acceleration, and significantly steeper than what expected in a more refined non-linear theory of diffusive shock acceleration. By accounting for the dynamical back-reaction of the non-thermal particles, such a theory in fact predicts that the more efficient the particle acceleration, the flatter the CR spectrum. In this work we put forward a self-consistent scenario in which the account for the magnetic field amplification induced by CR streaming produces the conditions for reversing such a trend, allowing --- at the same time --- for rather steep spectra and CR acceleration efficiencies (about 20%) consistent with the hypothesis that SNRs are the sources of Galactic CRs. In particular, we quantitatively work out the details of instantaneous and cumulative CR spectra during the evolution of a typical SNR, also stressing the implications of the observed levels of magnetization on both the expected maximum energy and the predicted CR acceleration efficiency. The latter naturally turns out to saturate around 10-30%, almost independently of the fraction of particles injected into the acceleration process as long as this fraction is larger than about 10410^{-4}.Comment: 24 pages, 5 figures, accepted for publication in JCA

    Breather lattice and its stabilization for the modified Korteweg-de Vries equation

    Get PDF
    We obtain an exact solution for the breather lattice solution of the modified Korteweg-de Vries (MKdV) equation. Numerical simulation of the breather lattice demonstrates its instability due to the breather-breather interaction. However, such multi-breather structures can be stabilized through the concurrent application of ac driving and viscous damping terms.Comment: 6 pages, 3 figures, Phys. Rev. E (in press

    Towards a Simple Model of Compressible Alfvenic Turbulence

    Get PDF
    A simple model collisionless, dissipative, compressible MHD (Alfvenic) turbulence in a magnetized system is investigated. In contrast to more familiar paradigms of turbulence, dissipation arises from Landau damping, enters via nonlinearity, and is distributed over all scales. The theory predicts that two different regimes or phases of turbulence are possible, depending on the ratio of steepening to damping coefficient (m_1/m_2). For strong damping (|m_1/m_2|<1), a regime of smooth, hydrodynamic turbulence is predicted. For |m_1/m_2|>1, steady state turbulence does not exist in the hydrodynamic limit. Rather, spikey, small scale structure is predicted.Comment: 6 pages, one figure, REVTeX; this version to be published in PRE. For related papers, see http://sdphpd.ucsd.edu/~medvedev/papers.htm

    New evidence for strong nonthermal effects in Tycho's supernova remnant

    Full text link
    For the case of Tycho's supernova remnant (SNR) we present the relation between the blast wave and contact discontinuity radii calculated within the nonlinear kinetic theory of cosmic ray (CR) acceleration in SNRs. It is demonstrated that these radii are confirmed by recently published Chandra measurements which show that the observed contact discontinuity radius is so close to the shock radius that it can only be explained by efficient CR acceleration which in turn makes the medium more compressible. Together with the recently determined new value Esn=1.2×1051E_{sn}=1.2\times 10^{51} erg of the SN explosion energy this also confirms our previous conclusion that a TeV gamma-ray flux of (25)×1013(2-5)\times 10^{-13} erg/(cm2^2s) is to be expected from Tycho's SNR. Chandra measurements and the HEGRA upper limit of the TeV gamma-ray flux together limit the source distance dd to 3.3d43.3\leq d\leq 4 kpc.Comment: 5 pages, 4 figures. Accepted for publication in Astrophysics and Space Science, Proc. of "The Multi-Messenger Approach to High-Energy Gamma-ray Sources (Third Workshop on the Nature of Unidentified High-Energy Sources)", Barcelona, July 4-7, 200

    Frozen spatial chaos induced by boundaries

    Get PDF
    We show that rather simple but non-trivial boundary conditions could induce the appearance of spatial chaos (that is stationary, stable, but spatially disordered configurations) in extended dynamical systems with very simple dynamics. We exemplify the phenomenon with a nonlinear reaction-diffusion equation in a two-dimensional undulated domain. Concepts from the theory of dynamical systems, and a transverse-single-mode approximation are used to describe the spatially chaotic structures.Comment: 9 pages, 6 figures, submitted for publication; for related work visit http://www.imedea.uib.es/~victo

    Magnetic fields in cosmic particle acceleration sources

    Full text link
    We review here some magnetic phenomena in astrophysical particle accelerators associated with collisionless shocks in supernova remnants, radio galaxies and clusters of galaxies. A specific feature is that the accelerated particles can play an important role in magnetic field evolution in the objects. We discuss a number of CR-driven, magnetic field amplification processes that are likely to operate when diffusive shock acceleration (DSA) becomes efficient and nonlinear. The turbulent magnetic fields produced by these processes determine the maximum energies of accelerated particles and result in specific features in the observed photon radiation of the sources. Equally important, magnetic field amplification by the CR currents and pressure anisotropies may affect the shocked gas temperatures and compression, both in the shock precursor and in the downstream flow, if the shock is an efficient CR accelerator. Strong fluctuations of the magnetic field on scales above the radiation formation length in the shock vicinity result in intermittent structures observable in synchrotron emission images. Resonant and non-resonant CR streaming instabilities in the shock precursor can generate mesoscale magnetic fields with scale-sizes comparable to supernova remnants and even superbubbles. This opens the possibility that magnetic fields in the earliest galaxies were produced by the first generation Population III supernova remnants and by clustered supernovae in star forming regions.Comment: 30 pages, Space Science Review

    A low density of the Extragalactic Background Light revealed by the H.E.S.S. spectra of the BLLac objects 1ES 1101-232 and H 2356-309

    Get PDF
    The unexpectedly hard spectra measured by HESS for the BLLacs 1ES 1101-232 and H 2356-309 has allowed an upper limit on the Extragalactic Background Light (EBL) to be derived in the optical/near-infrared range, which is very close to the lower limit given by the resolved galaxy counts. This result seems to exclude a large contribution to the EBL from other sources (e.g. Population III stars) and indicates that the intergalactic space is more transparent to gamma-rays than previously thought. A brief discussion of EBL absorption effects on blazar spectra and further observational tests to check this conclusion are presented, including the selection of new candidates for observations with Cherenkov telescopes

    UHECR as Decay Products of Heavy Relics? The Lifetime Problem

    Full text link
    The essential features underlying the top-down scenarii for UHECR are discussed, namely, the stability (or lifetime) imposed to the heavy objects (particles) whatever they be: topological and non-topological solitons, X-particles, cosmic defects, microscopic black-holes, fundamental strings. We provide an unified formula for the quantum decay rate of all these objects as well as the particle decays in the standard model. The key point in the top-down scenarii is the necessity to adjust the lifetime of the heavy object to the age of the universe. This ad-hoc requirement needs a very high dimensional operator to govern its decay and/or an extremely small coupling constant. The natural lifetimes of such heavy objects are, however, microscopic times associated to the GUT energy scale (sim 10^{-28} sec. or shorter). It is at this energy scale (by the end of inflation) where they could have been abundantly formed in the early universe and it seems natural that they decayed shortly after being formed.Comment: 11 pages, LaTex, no figures, updated versio
    corecore