23 research outputs found

    Information decomposition of symbolic sequences

    Full text link
    We developed a non-parametric method of Information Decomposition (ID) of a content of any symbolical sequence. The method is based on the calculation of Shannon mutual information between analyzed and artificial symbolical sequences, and allows the revealing of latent periodicity in any symbolical sequence. We show the stability of the ID method in the case of a large number of random letter changes in an analyzed symbolic sequence. We demonstrate the possibilities of the method, analyzing both poems, and DNA and protein sequences. In DNA and protein sequences we show the existence of many DNA and amino acid sequences with different types and lengths of latent periodicity. The possible origin of latent periodicity for different symbolical sequences is discussed.Comment: 18 pages, 8 figure

    Hopping Conductivity and Dielectric Relaxations in Ag/PAN Nanocomposites

    No full text
    The dependence of the conductivity and electric modulus of silver/polyacrylonitrile nanocomposites on the frequency of an alternating electric field has been studied at different temperatures and starting mixture AgNO3 contents. The frequency dependences on the conductivity of the nanocomposites in the range of 103–106 Hz are in good agreement with the power law f0.8. The observed relaxation maxima in the relation of the imaginary part of the electric modulus on the frequency can be explained by interfacial polarization. It was shown that the frequency dispersions of conductivity and electric modulus were well described by the Dyre and Cole-Davidson models, respectively. Using these models, we have estimated the relaxation times and the activation energies of these structures. A mechanism of charge transport responsible for the conductivity of nanocomposites is proposed. An assumption is made regarding the presence of Ag42+ and Ag82+ silver clusters in the polymer

    Hydrogen donating capacity of water in catalytic and non-catalytic aquathermolysis of extra-heavy oil: Deuterium tracing study

    No full text
    The goal of this work is to try to figure out the role of water in catalytic and non-catalytic aquathermolysis by using isotope tracing techniques. For this purpose, heavy water (deuterium oxide, D2O) was used to replace the ordinary water (H2O) for catalytic and non-catalytic aquathermolysis processes of extra-heavy oil with high sulfur content in autoclave. The donating and upgrading performance of D2O were deeply investigated by analyzing the upgraded (deuterated) oil and their SARA (saturates, aromatics, resins and asphaltenes) fractions using different tracing techniques (FTIR, isotope and elemental analysis), evolved gases by GC, and change in physical-chemical properties of upgraded (deuterated) oils by viscosity measurement, SARA analysis, elemental analysis and GC, etc. The results proved the chemical role of water as a green and environmental hydrogen-donor solvent during aquathermolysis process, verified by considerable deuterium substitution (deuteration) obtained from isotope analysis both in upgraded oil and SARA fractions. The results are further supported by significant deuterium exchanges (deuteration) of aliphatic and aromatics parts in the initial and deuterated oil samples and their individual SARA fractions in FTIR spectra. Simultaneously, introducing Ni-tallate as an oil-soluble catalyst promoted the donating capacity of water, thus significantly improving the upgrading performance. The important finding about the role of water in catalytic and non-catalytic aquathermolysis not only enriches the theoretical basis in this area, but also provides a strong support for the use of catalysts in aquathermolysis for improving in-situ heavy oil upgrading performance

    Traveling wave solutions for some important coupled nonlinear physical models via the coupled Higgs equation and the Maccari system

    Get PDF
    In this article, the exp(−Φ(ξ))-expansion method has been successfully implemented to seek traveling wave solutions of the coupled Higgs field equation and the Maccari system. The result reveals that the method together with the first order ordinary differential equation is a very influential and effective tool for solving coupled nonlinear partial differential equations in mathematical physics and engineering. The obtained solutions have been articulated by the hyperbolic functions, trigonometric functions and rational functions with arbitrary constants. Numerical results together with the graphical representation explicitly reveal the high efficiency and reliability of the proposed algorithm
    corecore