84 research outputs found

    Probiotic-Based bacteriocin: Immunity supplementation against viruses. An updated review

    Get PDF
    Viral infections are a major cause of severe, fatal diseases worldwide. Recently, these infections have increased due to demanding contextual circumstances, such as environmental changes, increased migration of people and product distribution, rapid demographic changes, and outbreaks of novel viruses, including the COVID-19 outbreak. Internal variables that influence viral immunity have received attention along with these external causes to avert such novel viral outbreaks. The gastrointestinal microbiome (GIM), particularly the present probiotics, plays a vital role in the host immune system by mediating host protective immunity and acting as an immune regulator. Bacteriocins possess numerous health benefits and exhibit antagonistic activity against enteric pathogens and immunobiotics, thereby inhibiting viral infections. Moreover, disrupting the homeostasis of the GIM/host immune system negatively affects viral immunity. The interactions between bacteriocins and infectious viruses, particularly in COVID-19, through improved host immunity and physiology are complex and have not yet been studied, although several studies have proven that bacteriocins influence the outcomes of viral infections. However, the complex transmission to the affected sites and siRNA defense against nuclease digestion lead to challenging clinical trials. Additionally, bacteriocins are well known for their biofunctional properties and underlying mechanisms in the treatment of bacterial and fungal infections. However, few studies have shown the role of probiotics-derived bacteriocin against viral infections. Thus, based on the results of the previous studies, this review lays out a road map for future studies on bacteriocins for treating viral infections

    Evaluation of spelt germplasm for polyphenol oxidase activity and aluminium resistance

    Get PDF
    Kidney transplantation is the best treatment option for patients with end-stage renal failure. At present, approximately 800 Dutch patients are registered on the active waiting list of Eurotransplant. The waiting time in the Netherlands for a kidney from a deceased donor is on average between 3 and 4years. During this period, patients are fully dependent on dialysis, which replaces only partly the renal function, whereas the quality of life is limited. Mortality among patients on the waiting list is high. In order to increase the number of kidney donors, several initiatives have been undertaken by the Dutch Kidney Foundation including national calls for donor registration and providing information on organ donation and kidney transplantation. The aim of the national PROCARE consortium is to develop improved matching algorithms that will lead to a prolonged survival of transplanted donor kidneys and a reduced HLA immunization. The latter will positively affect the waiting time for a retransplantation. The present algorithm for allocation is among others based on matching for HLA antigens, which were originally defined by antibodies using serological typing techniques. However, several studies suggest that this algorithm needs adaptation and that other immune parameters which are currently not included may assist in improving graft survival rates. We will employ a multicenter-based evaluation on 5429 patients transplanted between 1995 and 2005 in the Netherlands. The association between key clinical endpoints and selected laboratory defined parameters will be examined, including Luminex-defined HLA antibody specificities, T and B cell epitopes recognized on the mismatched HLA antigens, non-HLA antibodies, and also polymorphisms in complement and Fc receptors functionally associated with effector functions of anti-graft antibodies. From these data, key parameters determining the success of kidney transplantation will be identified which will lead to the identification of additional parameters to be included in future matching algorithms aiming to extend survival of transplanted kidneys and to diminish HLA immunization. Computer simulation studies will reveal the number of patients having a direct benefit from improved matching, the effect on shortening of the waiting list, and the decrease in waiting time

    Allocation to highly sensitized patients based on acceptable mismatches results in low rejection rates comparable to nonsensitized patients

    Get PDF
    Contains fulltext : 208426.pdf (publisher's version ) (Open Access)Whereas regular allocation avoids unacceptable mismatches on the donor organ, allocation to highly sensitized patients within the Eurotransplant Acceptable Mismatch (AM) program is based on the patient's HLA phenotype plus acceptable antigens. These are HLA antigens to which the patient never made antibodies, as determined by extensive laboratory testing. AM patients have superior long-term graft survival compared with highly sensitized patients in regular allocation. Here, we questioned whether the AM program also results in lower rejection rates. From the PROCARE cohort, consisting of all Dutch kidney transplants in 1995-2005, we selected deceased donor single transplants with a minimum of 1 HLA mismatch and determined the cumulative 6-month rejection incidence for patients in AM or regular allocation. Additionally, we determined the effect of minimal matching criteria of 1 HLA-B plus 1 HLA-DR, or 2 HLA-DR antigens on rejection incidence. AM patients showed significantly lower rejection rates than highly immunized patients in regular allocation, comparable to nonsensitized patients, independent of other risk factors for rejection. In contrast to highly sensitized patients in regular allocation, minimal matching criteria did not affect rejection rates in AM patients. Allocation based on acceptable antigens leads to relatively low-risk transplants for highly sensitized patients with rejection rates similar to those of nonimmunized individuals

    NEOTROPICAL XENARTHRANS: a data set of occurrence of xenarthran species in the Neotropics

    Get PDF
    Xenarthrans – anteaters, sloths, and armadillos – have essential functions for ecosystem maintenance, such as insect control and nutrient cycling, playing key roles as ecosystem engineers. Because of habitat loss and fragmentation, hunting pressure, and conflicts with 24 domestic dogs, these species have been threatened locally, regionally, or even across their full distribution ranges. The Neotropics harbor 21 species of armadillos, ten anteaters, and six sloths. Our dataset includes the families Chlamyphoridae (13), Dasypodidae (7), Myrmecophagidae (3), Bradypodidae (4), and Megalonychidae (2). We have no occurrence data on Dasypus pilosus (Dasypodidae). Regarding Cyclopedidae, until recently, only one species was recognized, but new genetic studies have revealed that the group is represented by seven species. In this data-paper, we compiled a total of 42,528 records of 31 species, represented by occurrence and quantitative data, totaling 24,847 unique georeferenced records. The geographic range is from the south of the USA, Mexico, and Caribbean countries at the northern portion of the Neotropics, to its austral distribution in Argentina, Paraguay, Chile, and Uruguay. Regarding anteaters, Myrmecophaga tridactyla has the most records (n=5,941), and Cyclopes sp. has the fewest (n=240). The armadillo species with the most data is Dasypus novemcinctus (n=11,588), and the least recorded for Calyptophractus retusus (n=33). With regards to sloth species, Bradypus variegatus has the most records (n=962), and Bradypus pygmaeus has the fewest (n=12). Our main objective with Neotropical Xenarthrans is to make occurrence and quantitative data available to facilitate more ecological research, particularly if we integrate the xenarthran data with other datasets of Neotropical Series which will become available very soon (i.e. Neotropical Carnivores, Neotropical Invasive Mammals, and Neotropical Hunters and Dogs). Therefore, studies on trophic cascades, hunting pressure, habitat loss, fragmentation effects, species invasion, and climate change effects will be possible with the Neotropical Xenarthrans dataset

    Neural stem cells: On where they hide, in which disguise, and how we may lure them out.

    No full text
    In contrast to the haematopoietic system in which each cell type is subject to constant turnover, thus endowing this system with the permanent ability to reconstitute itself, the nervous system has long been known as an organ devoid of spontaneous cellular reconstitution. Yet the discovery that certain regions of the mammalian central nervous system do sustain neurogenesis throughout life, together with the fact that cells can be isolated from the adult brain that generate neurons in vitro, has led to the idea that the nervous tissue harbours neural stem cells. The term “neural stem cell” has now become associated with enormous expectations for curing diseases of the nervous system. Yet many of the biological fundamentals of neural stem cells need to be revealed before these expectations can be properly judged or even fulfilled. This begins with the question of whether the neural stem cell corresponds to a real entity or rather represents an in vitro dedifferentiation phenomenon. In this chapterwe attempt to give an overviewof our current knowledge of the biology of the presumable adult neural stem cell. This is followed by a comparative assessment of the possibilities of using adult neural stemcells and embryonic stem cells for therapeutic approaches in the context of neurodegenerative diseases. Finally, we will look at the “evil side” of stemness by discussing the evidence that brain cancersmay originate from cells with stem cell-like properties

    Regionalization and fate specification in neurospheres: The role of Olig2 and Pax6.

    No full text
    Neurosphere cultures are widely used to propagate multipotent CNS precursors, but their differentiation into neurons or oligodendrocytes is rather poor. To elucidate fate determination in this system, we examined the expression and function of candidate transcription factors in neurospheres derived from different CNS regions during development and adulthood. We observed prominent down-regulation of most transcription factors present in telencephalic precursors upon growth factor exposure in neurosphere cultures while Olig1 and Olig2 expression was strongly up-regulated. Interference with Olig2 in neurospheres revealed its role in self-renewal during expansion and for the generation of neurons and oligodendrocytes during differentiation. We further show that neurogenesis becomes fully Pax6-dependent in the neurosphere culture system, independent of the region of origin, and that Pax6 overexpression is sufficient to direct almost all neurosphere-derived cells towards neurogenesis. Thus, a pathway combining transcription factors of dorsal and ventral regions is activated in the neurosphere culture model. (C) 2004 Elsevier Inc. All rights reserved
    • 

    corecore