660 research outputs found

    Markov Properties of Electrical Discharge Current Fluctuations in Plasma

    Full text link
    Using the Markovian method, we study the stochastic nature of electrical discharge current fluctuations in the Helium plasma. Sinusoidal trends are extracted from the data set by the Fourier-Detrended Fluctuation analysis and consequently cleaned data is retrieved. We determine the Markov time scale of the detrended data set by using likelihood analysis. We also estimate the Kramers-Moyal's coefficients of the discharge current fluctuations and derive the corresponding Fokker-Planck equation. In addition, the obtained Langevin equation enables us to reconstruct discharge time series with similar statistical properties compared with the observed in the experiment. We also provide an exact decomposition of temporal correlation function by using Kramers-Moyal's coefficients. We show that for the stationary time series, the two point temporal correlation function has an exponential decaying behavior with a characteristic correlation time scale. Our results confirm that, there is no definite relation between correlation and Markov time scales. However both of them behave as monotonic increasing function of discharge current intensity. Finally to complete our analysis, the multifractal behavior of reconstructed time series using its Keramers-Moyal's coefficients and original data set are investigated. Extended self similarity analysis demonstrates that fluctuations in our experimental setup deviates from Kolmogorov (K41) theory for fully developed turbulence regime.Comment: 25 pages, 9 figures and 4 tables. V3: Added comments, references, figures and major correction

    Energy Norms and the Stability of the Einstein Evolution Equations

    Get PDF
    The Einstein evolution equations may be written in a variety of equivalent analytical forms, but numerical solutions of these different formulations display a wide range of growth rates for constraint violations. For symmetric hyperbolic formulations of the equations, an exact expression for the growth rate is derived using an energy norm. This expression agrees with the growth rate determined by numerical solution of the equations. An approximate method for estimating the growth rate is also derived. This estimate can be evaluated algebraically from the initial data, and is shown to exhibit qualitatively the same dependence as the numerically-determined rate on the parameters that specify the formulation of the equations. This simple rate estimate therefore provides a useful tool for finding the most well-behaved forms of the evolution equations.Comment: Corrected typos; to appear in Physical Review

    Molecular characterization and phylogeny of Shiga toxin–producing Escherichia coli isolates obtained from two Dutch regions using whole genome sequencing

    Get PDF
    AbstractShiga toxin–producing Escherichia coli (STEC) is one of the major causes of human gastrointestinal disease and has been implicated in sporadic cases and outbreaks of diarrhoea, haemorrhagic colitis and haemolytic uremic syndrome worldwide. In this study, we determined the molecular characteristics and phylogenetic relationship of STEC isolates, and their genetic diversity was compared to that of other E. coli populations. Whole genome sequencing was performed on 132 clinical STEC isolates obtained from the faeces of 129 Dutch patients with gastrointestinal complaints. STEC isolates of this study belonged to 44 different sequence types (STs), 42 serogenotypes and 14 stx subtype combinations. Antibiotic resistance genes were more frequently present in stx1-positive isolates compared to stx2 and stx1 + stx2–positive isolates. The iha, mchB, mchC, mchF, subA, ireA, senB, saa and sigA genes were significantly more frequently present in eae-negative than in eae-positive STEC isolates. Presence of virulence genes encoding type III secretion proteins and adhesins was associated with isolates obtained from patients with bloody diarrhoea. Core genome phylogenetic analysis showed that isolates clustered according to their ST or serogenotypes irrespective of stx subtypes. Isolates obtained from patients with bloody diarrhoea were from diverse phylogenetic backgrounds. Some STEC isolates shared common ancestors with non-STEC isolates. Whole genome sequencing is a powerful tool for clinical microbiology, allowing high-resolution molecular typing, population structure analysis and detailed molecular characterization of strains. STEC isolates of a substantial genetic diversity and of distinct phylogenetic groups were observed in this study

    Novel evaluation of the two-pion contribution to the nucleon isovector form factors

    Get PDF
    We calculate the two-pion continuum contribution to the nucleon isovector spectral functions drawing upon the new high statistics measurements of the pion form factor by the CMD-2, KLOE, and SND collaborations. The general structure of the spectral functions remains unchanged, but the magnitude increases by about 10%. Using the updated spectral functions, we calculate the contribution of the two-pion continuum to the nucleon isovector form factors and radii. We compare the isovector radii with simple rho-pole models and illustrate their strong underestimation in such approaches. Moreover, we give a convenient parametrization of the result for use in future form factor analyses.Comment: 9 pages, 2 eps figures, revtex4, CMD-2 and SND data included, conclusions unchanged, version to appear in Phys. Lett.

    SLE(κ,ρ\kappa,\rho)and Boundary Coulomb Gas

    Full text link
    We consider the coulomb gas model on the upper half plane with different boundary conditions, namely Drichlet, Neuman and mixed. We related this model to SLE(κ,ρ\kappa,\rho) theories. We derive a set of conditions connecting the total charge of the coulomb gas, the boundary charges, the parameters κ\kappa and ρ\rho. Also we study a free fermion theory in presence of a boundary and show with the same methods that it would lead to logarithmic boundary changing operators.Comment: 10 pages, no figur

    Towards surface quantum optics with Bose-Einstein condensates in evanescent waves

    Full text link
    We present a surface trap which allows for studying the coherent interaction of ultracold atoms with evanescent waves. The trap combines a magnetic Joffe trap with a repulsive evanescent dipole potential. The position of the magnetic trap can be controlled with high precision which makes it possible to move ultracold atoms to the surface of a glass prism in a controlled way. The optical potential of the evanescent wave compensates for the strong attractive van der Waals forces and generates a potential barrier at only a few hundred nanometers from the surface. The trap is tested with Rb Bose-Einstein condensates (BEC), which are stably positioned at distances from the surfaces below one micrometer

    Extending the lifetime of 3D black hole computations with a new hyperbolic system of evolution equations

    Get PDF
    We present a new many-parameter family of hyperbolic representations of Einstein's equations, which we obtain by a straightforward generalization of previously known systems. We solve the resulting evolution equations numerically for a Schwarzschild black hole in three spatial dimensions, and find that the stability of the simulation is strongly dependent on the form of the equations (i.e. the choice of parameters of the hyperbolic system), independent of the numerics. For an appropriate range of parameters we can evolve a single 3D black hole to t600Mt \simeq 600 M -- 1300M1300 M, and are apparently limited by constraint-violating solutions of the evolution equations. We expect that our method should result in comparable times for evolutions of a binary black hole system.Comment: 11 pages, 2 figures, submitted to PR

    Standardized image interpretation and post-processing in cardiovascular magnetic resonance - 2020 update : Society for Cardiovascular Magnetic Resonance (SCMR): Board of Trustees Task Force on Standardized Post-Processing

    Get PDF
    With mounting data on its accuracy and prognostic value, cardiovascular magnetic resonance (CMR) is becoming an increasingly important diagnostic tool with growing utility in clinical routine. Given its versatility and wide range of quantitative parameters, however, agreement on specific standards for the interpretation and post-processing of CMR studies is required to ensure consistent quality and reproducibility of CMR reports. This document addresses this need by providing consensus recommendations developed by the Task Force for Post-Processing of the Society for Cardiovascular Magnetic Resonance (SCMR). The aim of the Task Force is to recommend requirements and standards for image interpretation and post-processing enabling qualitative and quantitative evaluation of CMR images. Furthermore, pitfalls of CMR image analysis are discussed where appropriate. It is an update of the original recommendations published 2013

    A new measurement of the structure functions PLLPTT/epsilonP_{LL}-P_{TT}/epsilon and PLTP_{LT} in virtual Compton scattering at Q2=Q^2= 0.33 (GeV/c)2^2

    Full text link
    The cross section of the epepγep \to e' p' \gamma reaction has been measured at Q2=0.33Q^2 = 0.33 (GeV/c)2^2. The experiment was performed using the electron beam of the MAMI accelerator and the standard detector setup of the A1 Collaboration. The cross section is analyzed using the low-energy theorem for virtual Compton scattering, yielding a new determination of the two structure functions P_LL}-P_{TT}/epsilon and PLTP_{LT} which are linear combinations of the generalized polarizabilities of the proton. We find somewhat larger values than in the previous investigation at the same Q2Q^2. This difference, however, is purely due to our more refined analysis of the data. The results tend to confirm the non-trivial Q2Q^2-evolution of the generalized polarizabilities and call for more measurements in the low-Q2Q^2 region (\le 1 (GeV/c)2^2).Comment: 9 pages, 10 figures. EPJA version. slight revisions in the text and figure

    3D simulations of linearized scalar fields in Kerr spacetime

    Get PDF
    We investigate the behavior of a dynamical scalar field on a fixed Kerr background in Kerr-Schild coordinates using a 3+1 dimensional spectral evolution code, and we measure the power-law tail decay that occurs at late times. We compare evolutions of initial data proportional to f(r) Y_lm(theta,phi) where Y_lm is a spherical harmonic and (r,theta,phi) are Kerr-Schild coordinates, to that of initial data proportional to f(r_BL) Y_lm(theta_BL,phi), where (r_BL,theta_BL) are Boyer-Lindquist coordinates. We find that although these two cases are initially almost identical, the evolution can be quite different at intermediate times; however, at late times the power-law decay rates are equal.Comment: 12 pages, 9 figures, revtex4. Major revision: added figures, added subsection on convergence, clarified discussion. To appear in Phys Rev
    corecore