5 research outputs found

    Antimicrobial potential of LEGUMES extracts against foodborne pathogens: A review

    Full text link
    [EN] Background: Alternative protein sources are being investigated in response to increasing consumer demand for innovative and healthy food products of vegetable origin to replace non-sustainable animal exploitation. The Leguminosae family includes a wide variety of plants and nutritious seeds, very rich in protein with a high biological value, carbohydrates, vitamins and minerals. Not only the seeds but also the aerial parts, pods, hulls and roots have proved to be natural sources of antioxidants, and anti-inflammatory and antimicrobial compounds. Scope and approach: The present article overviews the antimicrobial potential of the most popular legumes worldwide against foodborne pathogens. Key findings and conclusions: According to the literature reviewed, soybean and chickpea are the two consumed legumes with the highest antimicrobial activity. Long-chain soy peptides (IKAFKEATKVDKVVVLWTA) have a high antimicrobial potential against both Gram-positive and Gram-negative bacteria at a concentration level of 37.2 ¿M. Also, a wide spectrum of proteins and peptides in raw chickpeas and processed extracts have exerted antimicrobial activity against foodborne pathogens when applied in the range 8¿64 ¿g/ml. These results open a new research line with good prospects regarding the development of a new generation of natural preservative ingredients and extracts to be included in novel formulated products. However, critical aspects, such as (i) the stability of antimicrobial activity during the shelf-life of newly formulated food products, and (ii) the microbial inactivation kinetics generated in novel matrices, should be covered prior to exploitation of legumes as sources of novel technological ingredients with antimicrobial potential.The present research work has been supported by funds provided by the Spanish Ministry of Economy and Competitiveness (MINECO) as the HELICOFOOD project, with reference AGL2014-53875-R. The post-doctoral contract of M.C. Pina-Pérez as Juan de la Cierva-Incorporación granted by the MINECO is also acknowledged.Pina Pérez, MC.; Ferrús Pérez, MA. (2018). Antimicrobial potential of LEGUMES extracts against foodborne pathogens: A review. Trends in Food Science & Technology. 72:114-124. doi:10.1016/j.tifs.2017.12.007S1141247

    Spread of a SARS-CoV-2 variant through Europe in the summer of 2020.

    Get PDF
    Following its emergence in late 2019, the spread of SARS-CoV-21,2 has been tracked by phylogenetic analysis of viral genome sequences in unprecedented detail3–5. Although the virus spread globally in early 2020 before borders closed, intercontinental travel has since been greatly reduced. However, travel within Europe resumed in the summer of 2020. Here we report on a SARS-CoV-2 variant, 20E (EU1), that was identified in Spain in early summer 2020 and subsequently spread across Europe. We find no evidence that this variant has increased transmissibility, but instead demonstrate how rising incidence in Spain, resumption of travel, and lack of effective screening and containment may explain the variant’s success. Despite travel restrictions, we estimate that 20E (EU1) was introduced hundreds of times to European countries by summertime travellers, which is likely to have undermined local efforts to minimize infection with SARS-CoV-2. Our results illustrate how a variant can rapidly become dominant even in the absence of a substantial transmission advantage in favourable epidemiological settings. Genomic surveillance is critical for understanding how travel can affect transmission of SARS-CoV-2, and thus for informing future containment strategies as travel resumes. © 2021, The Author(s), under exclusive licence to Springer Nature Limited

    Assessment of two complementary influenza surveillance systems : Sentinel primary care influenza-like illness versus severe hospitalized laboratory-confirmed influenza using the moving epidemic method

    Get PDF
    Monitoring seasonal influenza epidemics is the corner stone to epidemiological surveillance of acute respiratory virus infections worldwide. This work aims to compare two sentinel surveillance systems within the Daily Acute Respiratory Infection Information System of Catalonia (PIDIRAC), the primary care ILI and Influenza confirmed samples from primary care (PIDIRAC-ILI and PIDIRAC-FLU) and the severe hospitalized laboratory confirmed influenza system (SHLCI), in regard to how they behave in the forecasting of epidemic onset and severity allowing for healthcare preparedness. Epidemiological study carried out during seven influenza seasons (2010-2017) in Catalonia, with data from influenza sentinel surveillance of primary care physicians reporting ILI along with laboratory confirmation of influenza from systematic sampling of ILI cases and 12 hospitals that provided data on severe hospitalized cases with laboratory-confirmed influenza (SHLCI-FLU). Epidemic thresholds for ILI and SHLCI-FLU (overall) as well as influenza A (SHLCI-FLUA) and influenza B (SHLCI-FLUB) incidence rates were assessed by the Moving Epidemics Method. Epidemic thresholds for primary care sentinel surveillance influenza-like illness (PIDIRAC-ILI) incidence rates ranged from 83.65 to 503.92 per 100.000 h. Paired incidence rate curves for SHLCI-FLU/PIDIRAC-ILI and SHLCI-FLUA/PIDIRAC-FLUA showed best correlation index' (0.805 and 0.724 respectively). Assessing delay in reaching epidemic level, PIDIRAC-ILI source forecasts an average of 1.6 weeks before the rest of sources paired. Differences are higher when SHLCI cases are paired to PIDIRAC-ILI and PIDIRAC-FLUB although statistical significance was observed only for SHLCI-FLU/PIDIRAC-ILI (p-value Wilcoxon test = 0.039). The combined ILI and confirmed influenza from primary care along with the severe hospitalized laboratory confirmed influenza data from PIDIRAC sentinel surveillance system provides timely and accurate syndromic and virological surveillance of influenza from the community level to hospitalization of severe cases

    Behavior of hospitalized severe influenza cases according to the outcome variable in Catalonia, Spain, during the 2017-2018 season

    Get PDF
    Altres ajuts: Programme of Prevention, Surveillance and Control of Transmissible Diseases (PREVICET); CIBER de Epidemiología y Salud Pública (CIBERESP).Influenza is an important cause of severe illness and death among patients with underlying medical conditions and in the elderly. The aim of this study was to investigate factors associated with ICU admission and death in patients hospitalized with severe laboratory-confirmed influenza during the 2017-2018 season in Catalonia. An observational epidemiological case-to-case study was carried out. Reported cases of severe laboratory-confirmed influenza requiring hospitalization in 2017-2018 influenza season were included. Mixed-effects regression analysis was used to estimate the factors associated with ICU admission and death. A total of 1306 cases of hospitalized severe influenza cases were included, of whom 175 (13.4%) died and 217 (16.6%) were ICU admitted. Age 65-74 years and ≥ 75 years and having ≥ 2 comorbidities were positively associated with death (aOR 3.19; 95%CI 1.19-8.50, aOR 6.95, 95%CI 2.76-1.80 and aOR 1.99; 95%CI 1.12-3.52, respectively). Neuraminidase inhibitor treatment and pneumonia were negatively associated with death. The 65-74 years and ≥ 75 years age groups were negatively associated with ICU admission (aOR 0.41; 95%CI 0.23-0.74 and aOR 0.30; 95%CI 0.17-0.53, respectively). A factor positively associated with ICU admission was neuraminidase inhibitor treatment. Our results support the need to investigate the worst outcomes of hospitalized severe cases, distinguishing between death and ICU admission

    The impact of the COVID-19 pandemic on Sexually Transmitted Infections surveillance data : incidence drop or artefact?

    Get PDF
    Altres ajuts: Fundacion Alfonso Martin Escudero and the Medical Research Council (grant numbers MR/K501256/1, MR/N013468/1).Background: Before the COVID-19 pandemic, Sexually transmitted infections (STIs) were increasing in Europe, and Spain and Catalonia were not an exception. Catalonia has been one of the regions with the highest number of COVID-19 confirmed cases in Spain. The objective of this study was to estimate the magnitude of the decline, due to the COVID-19 pandemic, in the number of STI confirmed cases in Catalonia during the lockdown and de-escalation phases. Methods: Interrupted time series analysis was performed to estimate the magnitude of decline in the number of STI reported confirmed cases - chlamydia, gonorrhoea, syphilis, and lymphogranuloma venereum- in Catalonia since lockdown with historical data, from March 13th to August 1st 2020, comparing the observed with the expected values. Results: We found that since the start of COVID-19 pandemic the number of STI reported cases was 51% less than expected, reaching an average of 56% during lockdown (50% and 45% during de-escalation and new normality) with a maximum decrease of 72% for chlamydia and minimum of 22% for syphilis. Our results indicate that fewer STIs were reported in females, people living in more deprived areas, people with no previous STI episodes during the last three years, and in the HIV negative. Conclusions: The STI notification sharp decline was maintained almost five months after lockdown started, well into the new normality. This fact can hardly be explained without significant underdiagnosis and underreporting. There is an urgent need to strengthen STI/HIV diagnostic programs and services, as well as surveillance, as the pandemic could be concealing the real size of the already described re-emergence of STIs in most of the European countries
    corecore