164 research outputs found

    Influences of cold working on tensile and bending strength of cold roll formed steel sections contain complex folded-in stiffeners

    Get PDF
    This paper aims to study the cold working influences on material and structural properties of the cold roll formed steel sections contain complex longitudinally stiffeners under bending. Tensile tests on flat and curved samples extracted from the complex stiffeners of channel and zed sections were conducted to investigate the change of material properties due to cold working during the roll forming process. The influences of cold working in the section flat regions, corners and stiffener bends were investigated and evaluated against some predictive models in literature studies. Nonlinear Finite Element modelling was developed to model the four-point bending tests to study the effects of cold working on the buckling and ultimate strengths of channel and zed sections. In the bending models, experimental material properties of section flat parts, corners and stiffener bends were implemented to search for the optimal shapes of the sections. Significant improvements were obtained for the section strength of the optimized sections in comparison to the original sections. Optimal shapes for the channel and zed sections with maximum strength in distortional buckling could be obtained while changing the stiffeners’ position, shape, sizes, and considering the effect of cold working. It revealed that, the optimal sections provided up to 13% and 17% increase in bending strength for the channel and zed section, respectively; however, when the effect of cold working at the section corner and the stiffener’s bend regions was included, the increase in bending strength increased up to 20% and 23%, respectively.We would like to acknowledge the University of Derby for providing the sponsor of this work [PGTA Studentship - E&T_14_PGTA_0717]. The tensile tests were carried out at the University of Sheffield

    Periodic Travelling Waves in Dimer Granular Chains

    Full text link
    We study bifurcations of periodic travelling waves in granular dimer chains from the anti-continuum limit, when the mass ratio between the light and heavy beads is zero. We show that every limiting periodic wave is uniquely continued with respect to the mass ratio parameter and the periodic waves with the wavelength larger than a certain critical value are spectrally stable. Numerical computations are developed to study how this solution family is continued to the limit of equal mass ratio between the beads, where periodic travelling waves of granular monomer chains exist

    Hidden magnetic transitions in thermoelectric layered cobaltite, [Ca2_2CoO3_3]0.62_{0.62}[CoO2_2]

    Full text link
    A positive muon spin rotation and relaxation (μ+\mu^+SR) experiment on [Ca2_2CoO3_3]0.62_{0.62}[CoO2_2], ({\sl i.e.}, Ca3_3Co4_4O9_9, a layered thermoelectric cobaltite) indicates the existence of two magnetic transitions at \sim 100 K and 400 - 600 K; the former is a transition from a paramagnetic state to an incommensurate ({\sf IC}) spin density wave ({\sf SDW}) state. The anisotropic behavior of zero-field μ+\mu^+SR spectra at 5 K suggests that the {\sf IC-SDW} propagates in the aa-bb plane, with oscillating moments directed along the c-axis; also the {\sf IC-SDW} is found to exist not in the [Ca2_2CoO3_3] subsystem but in the [CoO2_2] subsystem. In addition, it is found that the long-range {\sf IC-SDW} order completes below \sim 30 K, whereas the short-range order appears below 100 K. The latter transition is interpreted as a gradual change in the spin state of Co ions %% at temperatures above 400 K. These two magnetic transitions detected by μ+\mu^+SR are found to correlate closely with the transport properties of [Ca2_2CoO3_3]0.62_{0.62}[CoO2_2].Comment: 7 pages, 8 figures. to be appeared in Phys. Rev.

    Complex lithium ion dynamics in simulated LiPO3 glass studied by means of multi-time correlation functions

    Full text link
    Molecular dynamics simulations are performed to study the lithium jumps in LiPO3 glass. In particular, we calculate higher-order correlation functions that probe the positions of single lithium ions at several times. Three-time correlation functions show that the non-exponential relaxation of the lithium ions results from both correlated back-and-forth jumps and the existence of dynamical heterogeneities, i.e., the presence of a broad distribution of jump rates. A quantitative analysis yields that the contribution of the dynamical heterogeneities to the non-exponential depopulation of the lithium sites increases upon cooling. Further, correlated back-and-forth jumps between neighboring sites are observed for the fast ions of the distribution, but not for the slow ions and, hence, the back-jump probability depends on the dynamical state. Four-time correlation functions indicate that an exchange between fast and slow ions takes place on the timescale of the jumps themselves, i.e., the dynamical heterogeneities are short-lived. Hence, sites featuring fast and slow lithium dynamics, respectively, are intimately mixed. In addition, a backward correlation beyond the first neighbor shell for highly mobile ions and the presence of long-range dynamical heterogeneities suggest that fast ion migration occurs along preferential pathways in the glassy matrix. In the melt, we find no evidence for correlated back-and-forth motions and dynamical heterogeneities on the length scale of the next-neighbor distance.Comment: 12 pages, 13 figure

    Mechanisms of Post-Stroke Fatigue: A Follow-Up From the Third Stroke Recovery and Rehabilitation Roundtable

    Get PDF
    Background Post-stroke fatigue (PSF) is a significant and highly prevalent symptom, whose mechanisms are poorly understood. The third Stroke Recovery and Rehabilitation Roundtable paper on PSF focussed primarily on defining and measuring PSF while mechanisms were briefly discussed. This companion paper to the main paper is aimed at elaborating possible mechanisms of PSF. Methods This paper reviews the available evidence that potentially explains the pathophysiology of PSF and draws parallels from fatigue literature in other conditions. We start by proposing a case for phenotyping PSF based on structural, functional, and behavioral characteristics of PSF. This is followed by discussion of a potentially significant role of early inflammation in the development of fatigue, specifically the impact of low-grade inflammation and its long-term systemic effects resulting in PSF. Of the many neurotransmitter systems in the brain, the dopaminergic systems have the most evidence for a role in PSF, along with a role in sensorimotor processing. Sensorimotor neural network dynamics are compromised as highlighted by evidence from both neurostimulation and neuromodulation studies. The double-edged sword effect of exercise on PSF provides further insight into how PSF might emerge and the importance of carefully titrating interventional paradigms. Conclusion The paper concludes by synthesizing the presented evidence into a unifying model of fatigue which distinguishes between factors that pre-dispose, precipitate, and perpetuate PSF. This framework will help guide new research into the biological mechanisms of PSF which is a necessary prerequisite for developing treatments to mitigate the debilitating effects of post-stroke fatigue

    Preembryo Personhood: An Assessment of the President’s Council Arguments

    Get PDF
    The President’s Council on Bioethics has addressed the moral status of human preembryos in its reports on stem cell research and human therapeutic cloning. Although the Council has been criticized for being hand-picked to favor the right-to-life viewpoint concerning human preembryos, it has embraced the idea that the right-to-life position should be defended in secular terms. This is an important feature of the Council’s work, and it demonstrates a recognition of the need for genuine engagement between opposing sides in the debate over stem cell research. To promote this engagement, the Council has stated in secular terms several arguments for the personhood of human preembryos. This essay presents and critiques those arguments, and it concludes that they are unsuccessful. If the best arguments in support of the personhood of human preembryos have been presented by the Council, then there are no reasonable secular arguments in support of that view

    Coherent electron-phonon coupling and polaron-like transport in molecular wires

    Full text link
    We present a technique to calculate the transport properties through one-dimensional models of molecular wires. The calculations include inelastic electron scattering due to electron-lattice interaction. The coupling between the electron and the lattice is crucial to determine the transport properties in one-dimensional systems subject to Peierls transition since it drives the transition itself. The electron-phonon coupling is treated as a quantum coherent process, in the sense that no random dephasing due to electron-phonon interactions is introduced in the scattering wave functions. We show that charge carrier injection, even in the tunneling regime, induces lattice distortions localized around the tunneling electron. The transport in the molecular wire is due to polaron-like propagation. We show typical examples of the lattice distortions induced by charge injection into the wire. In the tunneling regime, the electron transmission is strongly enhanced in comparison with the case of elastic scattering through the undistorted molecular wire. We also show that although lattice fluctuations modify the electron transmission through the wire, the modifications are qualitatively different from those obtained by the quantum electron-phonon inelastic scattering technique. Our results should hold in principle for other one-dimensional atomic-scale wires subject to Peierls transitions.Comment: 21 pages, 8 figures, accepted for publication in Phys. Rev. B (to appear march 2001

    Drug Attitude and Adherence: A Qualitative Insight of Patients with Hypertension

    Get PDF
    The study is aimed to explore the perceptions and experiences of hypertensive patients toward medication use and adherence. The study was qualitative in nature conducted at Sandamen Provisional Hospital of Quetta city, Pakistan; a public hospital catering to the health needs of about 40% of the population. A qualitative approach was used to gain an in-depth knowledge of the issues. Sixteen patients were interviewed, and the saturation point was achieved after the 14th interview. All interviews were audio-taped, transcribed verbatim, and were then analyzed for thematic contents by the standard content analysis framework. Thematic content analysis yielded five major themes. (1) Perceived benefits and risks of medications, (2) physician's interaction with patients, (3) perception toward traditional remedies, (4) layman concept toward medications, and (5) beliefs toward hypertension and its control. The majority of the patients carried specific unrealistic beliefs regarding the long-term use of medication; yet these beliefs were heavily accepted and practiced by the society. The study indicated a number of key themes that can be used in changing the beliefs and experiences of hypertensive patients. Physician's attitude, patient's past experiences, and knowledge related to hypertension were noted as major contributing factors thus resulting in nonadherence to therapy prescribed
    corecore