960 research outputs found

    Spin-Orbit-Induced Kondo Size Effect in Thin Films with 5/2-spin Impurities

    Full text link
    Recently, for spin S=5/2S=5/2 impurities quite different size dependence of the Kondo contribution to the resistivity was found experimentally than for S=2. Therefore previous calculation about the effect of the spin-orbit-induced magnetic anisotropy on the Kondo amplitude of the resistivity is extended to the case of S=5/2S=5/2 impurity spin which differs from the integer spin case as the ground state is degenerated. In this case the Kondo contribution remains finite when the sample size goes to zero and the thickness dependence in the Kondo resistivity is much weaker for Cu(Mn). The behavior of the Kondo coefficient as a function of the thickness depends on the Kondo temperature, that is somewhat stronger for larger TKT_K. Comparing our results with a recent experiment in thin Cu(Mn) films, we find a good agreement.Comment: 8 pages, ReVTeX + 4 figures (Postscript

    Asymptotics of the trap-dominated Gunn effect in p-type Ge

    Full text link
    We present an asymptotic analysis of the Gunn effect in a drift-diffusion model---including electric-field-dependent generation-recombination processes---for long samples of strongly compensated p-type Ge at low temperature and under dc voltage bias. During each Gunn oscillation, there are different stages corresponding to the generation, motion and annihilation of solitary waves. Each stage may be described by one evolution equation for only one degree of freedom (the current density), except for the generation of each new wave. The wave generation is a faster process that may be described by solving a semiinfinite canonical problem. As a result of our study we have found that (depending on the boundary condition) one or several solitary waves may be shed during each period of the oscillation. Examples of numerical simulations validating our analysis are included.Comment: Revtex, 25 pag., 5 fig., to appear Physica

    Transient elastohydrodynamic lubrication analysis of a novel metal-on-metal hip prosthesis with a non-spherical femoral bearing surface

    No full text
    Effective lubrication performance of metal-on-metal hip implants only requires optimum conformity within the main loaded area, while it is advantageous to increase the clearance in the equatorial region. Such a varying clearance can be achieved by using non-spherical bearing surfaces for either acetabular or femoral components. An elastohydrodynamic lubrication model of a novel metal-on-metal hip prosthesis using a non-spherical femoral bearing surface against a spherical cup was solved under loading and motion conditions specified by ISO standard. A full numerical methodology of considering the geometric variation in the rotating non-spherical head in elastohydrodynamic lubrication solution was presented, which is applicable to all non-spherical head designs. The lubrication performance of a hip prosthesis using a specific non-spherical femoral head, Alpharabola, was analysed and compared with those of spherical bearing surfaces and a non-spherical Alpharabola cup investigated in previous studies. The sensitivity of the lubrication performance to the anteversion angle of the Alpharabola head was also investigated. Results showed that the non-spherical head introduced a large squeeze-film action and also led to a large variation in clearance within the loaded area. With the same equatorial clearance, the lubrication performance of the metal-on-metal hip prosthesis using an Alpharabola head was better than that of the conventional spherical bearings but worse than that of the metal-on-metal hip prosthesis using an Alpharabola cup. The reduction in the lubrication performance caused by the initial anteversion angle of the non-spherical head was small, compared with the improvement resulted from the non-spherical geometry

    Ghost Condensation and a Consistent Infrared Modification of Gravity

    Full text link
    We propose a theoretically consistent modification of gravity in the infrared, which is compatible with all current experimental observations. This is an analog of Higgs mechanism in general relativity, and can be thought of as arising from ghost condensation--a background where a scalar field \phi has a constant velocity, = M^2. The ghost condensate is a new kind of fluid that can fill the universe, which has the same equation of state, \rho = -p, as a cosmological constant, and can hence drive de Sitter expansion of the universe. However, unlike a cosmological constant, it is a physical fluid with a physical scalar excitation, which can be described by a systematic effective field theory at low energies. The excitation has an unusual low-energy dispersion relation \omega^2 \sim k^4 / M^2. If coupled to matter directly, it gives rise to small Lorentz-violating effects and a new long-range 1/r^2 spin dependent force. In the ghost condensate, the energy that gravitates is not the same as the particle physics energy, leading to the possibility of both sources that can gravitate and antigravitate. The Newtonian potential is modified with an oscillatory behavior starting at the distance scale M_{Pl}/M^2 and the time scale M_{Pl}^2/M^3. This theory opens up a number of new avenues for attacking cosmological problems, including inflation, dark matter and dark energy.Comment: 42 pages, LaTeX 2

    Ferromagnetism and Canted Spin Phase in AlAs/GaMnAs Single Quantum Wells: Monte Carlo Simulation

    Full text link
    The magnetic order resulting from a confinement-adapted Ruderman-Kittel-Kasuya-Yosida indirect exchange between magnetic moments in the metallic phase of a AlAs/Ga(1-x)Mn(x)As quantum well is studied by Monte Carlo simulation. This coupling mechanism involves magnetic moments and carriers (holes), both coming from the same Mn(2+) ions. It leads to a paramagnetic, a ferromagnetic, or a canted spin phase, depending on the carrier concentration, and on the magnetic layer width. It is shown that high transition temperatures may be obtained.Comment: 7 figure

    Confusing non-standard neutrino interactions with oscillations at a neutrino factory

    Get PDF
    Most neutrino mass theories contain non-standard interactions (NSI) of neutrinos which can be either non-universal (NU) or flavor-changing (FC). We study the impact of such interactions on the determination of neutrino mixing parameters at a neutrino factory using the so-called ``golden channels'' \pnu{e}\to\pnu{\mu} for the measurement of \theta_{13}. We show that a certain combination of FC interactions in neutrino source and earth matter can give exactly the same signal as oscillations arising due to \theta_{13}. This implies that information about \theta_{13} can only be obtained if bounds on NSI are available. Taking into account the existing bounds on FC interactions, this leads to a drastic loss in sensitivity in \theta_{13}, at least two orders of magnitude. A near detector at a neutrino factory offers the possibility to obtain stringent bounds on some NSI parameters. Such near site detector constitutes an essential ingredient of a neutrino factory and a necessary step towards the determination of \theta_{13} and subsequent study of leptonic CP violation.Comment: 23 pages, 5 figures, improved version, accepted for publication in Phs. Rev. D, references adde

    Status of a hybrid three-neutrino interpretation of neutrino data

    Get PDF
    We reanalyze the non-standard interaction (NSI) solutions to the solar neutrino problem in the light of the latest solar, atmospheric and reactor neutrino data. We show that such solutions, although preferred by the solar data and consistent with the oscillation description of the atmospheric neutrino data, are ruled out by the first results of the KamLAND reactor experiment, at more than 3_sigma.Comment: 19 pages, LaTeX file using Elsart, 2 tables and 4 figures included. This version updates the one published in Nucl.Phys.B629:479-490,2002 by including the new KamLAND dat

    Gemini Observations of Disks and Jets in Young Stellar Objects and in Active Galaxies

    Full text link
    We present first results from the Near-infrared Integral Field Spectrograph (NIFS) located at Gemini North. For the active galaxies Cygnus A and Perseus A we observe rotationally-supported accretion disks and adduce the existence of massive central black holes and estimate their masses. In Cygnus A we also see remarkable high-excitation ionization cones dominated by photoionization from the central engine. In the T-Tauri stars HV Tau C and DG Tau we see highly-collimated bipolar outflows in the [Fe II] 1.644 micron line, surrounded by a slower molecular bipolar outflow seen in the H_2 lines, in accordance with the model advocated by Pyo et al. (2002).Comment: Invited paper presented at the 5th Stromlo Symposium. 9 pages, 7 figures. Accepted for publication in Astrophysics & Space Scienc

    Three-spined stickleback armour predicted by body size, minimum winter temperature and pH

    Get PDF
    Similar phenotypes evolve under equivalent environmental conditions through parallel evolution. Because they have repeatedly invaded and adapted to new freshwater environments, the three-spined stickleback (Gasterosteus aculeatus) offers a powerful system for understanding the agents of selection in nature that drive parallel evolution. Here we examine the ecological and environmental variables responsible for morphological variation in three-spined stickleback populations across its European range. We collected fish from 85 populations, encompassing much of the European latitudinal range of the species and including lowland rivers and lakes, coastal lagoons, and moorland ponds. We measured biotic and environmental variables at all sites along with morphological traits for 2,358 individuals. Using an information theory approach, we identified body size, minimum average winter temperature and pH as primary predictors of stickleback armour evolution, challenging current hypotheses for stickleback morphological diversification and demonstrating the fundamental role played by body size and scaling in mediating responses to selection. Stickleback lateral plate phenotype represents a potentially powerful tool for monitoring change in climate variables across the northern temperate region
    corecore