15,024 research outputs found

    Degradation of multiplier phototubes exposed to spatial radiations

    Get PDF
    Degradation of multiplier phototubes exposed to spatial radiation

    Mean field baryon magnetic moments and sumrules

    Full text link
    New developments have spurred interest in magnetic moments (ÎĽ\mu-s) of baryons. The measurement of some of the decuplet ÎĽ\mu-s and the findings of new sumrules from various methods are partly responsible for this renewed interest. Our model, inspired by large colour approximation, is a relativistic self consistent mean field description with a modified Richardson potential and is used to describe the ÎĽ\mu-s and masses of all baryons with up (u), down (d) and strange (s) quarks. We have also checked the validity of the Franklin sumrule (referred to as CGSR in the literature) and sumrules of Luty, March-Russell and White. We found that our result for sumrules matches better with experiment than the non-relativistic quark model prediction. We have also seen that quark magnetic moments depend on the baryon in which they belong while the naive quark model expects them to be constant.Comment: 7 pages, no figure, uses epl.cl

    Four-point functions and kaon decays in a minimal AdS/QCD model

    Full text link
    We study the predictions of holographic QCD for various observable four-point quark flavour current-current correlators. The dual 5-dimensional bulk theory we consider is a SU(3)L×SU(3)RSU(3)_L \times SU(3)_R Yang Mills theory in a slice of AdS5AdS_5 spacetime with boundaries. Particular UV and IR boundary conditions encode the spontaneous breaking of the dual 4D global chiral symmetry down to the SU(3)VSU(3)_V subgroup. We explain in detail how to calculate the 4D four-point quark flavour current-current correlators using the 5D holographic theory, including interactions. We use these results to investigate predictions of holographic QCD for the ΔI=1/2\Delta I = 1/2 rule for kaon decays and the BKB_K parameter. The results agree well in comparison with experimental data, with an accuracy of 25% or better. The holographic theory automatically includes the contributions of the meson resonances to the four-point correlators. The correlators agree well in the low-momentum and high-momentum limit, in comparison with chiral perturbation theory and perturbative QCD results, respectively.Comment: Published version, title changed to conform with Journal format, references and clarifying remarks added, 40 pages, 5 figure

    Subthreshold characteristics of pentacene field-effect transistors influenced by grain boundaries.

    Get PDF
    Grain boundaries in polycrystalline pentacene films significantly affect the electrical characteristics of pentacene field-effect transistors (FETs). Upon reversal of the gate voltage sweep direction, pentacene FETs exhibited hysteretic behaviours in the subthreshold region, which was more pronounced for the FET having smaller pentacene grains. No shift in the flat-band voltage of the metal-insulator-semiconductor capacitor elucidates that the observed hysteresis was mainly caused by the influence of localized trap states existing at pentacene grain boundaries. From the results of continuous on/off switching operation of the pentacene FETs, hole depletion during the off period is found to be limited by pentacene grain boundaries. It is suggested that the polycrystalline nature of a pentacene film plays an important role on the dynamic characteristics of pentacene FETs

    High Energy Physics from High Performance Computing

    Full text link
    We discuss Quantum Chromodynamics calculations using the lattice regulator. The theory of the strong force is a cornerstone of the Standard Model of particle physics. We present USQCD collaboration results obtained on Argonne National Lab's Intrepid supercomputer that deepen our understanding of these fundamental theories of Nature and provide critical support to frontier particle physics experiments and phenomenology.Comment: Proceedings of invited plenary talk given at SciDAC 2009, San Diego, June 14-18, 2009, on behalf of the USQCD collaboratio

    Comparative Review of the Treatment Methodologies of Carotid Stenosis

    Get PDF
    The treatment of carotid stenosis entails three methodologies, namely, medical management, carotid angioplasty and stenting (CAS), as well as carotid endarterectomy (CEA). The North American Symptomatic Carotid Endarterectomy Trial (NASCET) and European Carotid Surgery Trial (ECST) have shown that symptomatic carotid stenosis greater than 70% is best treated with CEA. In asymptomatic patients with carotid stenosis greater than 60%, CEA was more beneficial than treatment with aspirin alone according to the Asymptomatic Carotid Atherosclerosis (ACAS) and Asymptomatic Carotid Stenosis Trial (ACST) trials. When CAS is compared with CEA, the CREST resulted in similar rates of ipsilateral stroke and death rates regardless of symptoms. However, CAS not only increased adverse effects in women, it also amplified stroke rates and death in elderly patients compared with CEA. CAS can maximize its utility in treating focal restenosis after CEA and patients with overwhelming cardiac risk or prior neck irradiation. When performing CEA, using a patch was equated to a more durable result than primary closure, whereas eversion technique is a new methodology deserving a spotlight. Comparing the three major treatment strategies of carotid stenosis has intrinsic drawbacks, as most trials are outdated and they vary in their premises, definitions, and study designs. With the newly codified best medical management including antiplatelet therapies with aspirin and clopidogrel, statin, antihypertensive agents, strict diabetes control, smoking cessation, and life style change, the current trials may demonstrate that asymptomatic carotid stenosis is best treated with best medical therapy. The ongoing trials will illuminate and reshape the treatment paradigm for symptomatic and asymptomatic carotid stenosis

    Key distillation from Gaussian states by Gaussian operations

    Get PDF
    We study the secrecy properties of Gaussian states under Gaussian operations. Although such operations are useless for quantum distillation, we prove that it is possible to distill a secret key secure against any attack from sufficiently entangled Gaussian states with non-positive partial transposition. Moreover, all such states allow for key distillation, when Eve is assumed to perform finite-size coherent attacks before the reconciliation process.Comment: 2 figures, REVTEX
    • …
    corecore