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We study the secrecy properties of Gaussian states under Gaussian operations. Although such
operations are useless for quantum distillation, we prove that it is possible to distill a secret key secure
against any attack from sufficiently entangled Gaussian states with nonpositive partial transposition.
Moreover, all such states allow for key distillation, when Eve is assumed to perform finite-size coherent
attacks before the reconciliation process.
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Quantum information theory (QIT) analyzes the possi-
bilities offered by quantum states for information encoding
and transmission. New processes, such as teleportation [1],
more powerful algorithms [2], or completely secure data
transmission [3] become possible by exploiting quantum
effects. Most of the QIT applications use entanglement as a
resource. It is therefore one of the most important tasks of
QIT to determine if a given state is entangled, and if yes,
whether its entanglement is ‘‘useful’’ for information pro-
cessing. Distillable states [4,5] posses such useful entan-
glement: using several copies of them and local operations
and classical communication (LOCC), one can create a
smaller number of maximally entangled states, which can
be used for variety of quantum information tasks. Given a
state, its distillable entanglement, ED, measures the
amount of pure-state entanglement that can be extracted
from it. Particularly important for cryptography is another
measure of entanglement KD: it specifies the number of
secret bits that can be extracted from a quantum state using
LOCC. Obviously, KD � ED, since a secret key can al-
ways be extracted from distilled maximally entangled
states, using, for instance, the Ekert protocol [6].
Entangled states which cannot be distilled, i.e., for which
ED � 0, exist and are termed ‘‘bound entangled’’ [7].
Although it was unclear whether these states could contain
useful entanglement, it has been recently shown that there
exist bound entangled states for which KD > ED � 0 [8].

All of the above results were originally considered for
finite-dimensional systems. More recently, many of these
concepts have been translated to the infinite dimensional
case [9]. In these systems, a key role is played by the set of
Gaussian states and Gaussian operations. First of all, it
naturally appears in experiments. In fact, non-Gaussian
operations turn out to be very challenging from an experi-
mental point of view. Moreover, the theoretical analysis of
Gaussian states and operations is also simplified since all
their properties can be expressed in terms of finite-
dimensional matrices.

To analyze the limitations and possibilities offered by
the Gaussian scenario is a relevant issue. The teleportation
of coherent states of light have been experimentally dem-
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onstrated [10]. Quantum cryptography has also been suc-
cessfully translated into the Gaussian regime. Gottesman
and Preskill proposed to use squeezed states and homodyne
measurements in a ‘‘prepare and measure’’ scheme [11].
Actually, no squeezing is required, since coherent states
are already sufficient for a secure key distribution with
Gaussian operations [12,13]. The experimental implemen-
tation of a coherent-state protocol has been recently real-
ized in [14]. From a more fundamental point of view, it is
interesting to know which information tasks can be
achieved in the Gaussian regime. It is known that all
Gaussian states have a positive Wigner function; i.e., there
is a local variable model reproducing all the (symmetri-
cally ordered) correlations for Gaussian states. Despite the
existence of this local description, these states and opera-
tions are useful for teleporting quantum states, or for
secure information transmission, applications that are im-
possible in a classical scenario.

An important negative result in this context was ob-
tained in Refs. [15,16]: quantum distillation by Gaussian
operations is impossible. That is, although it is known that
all Gaussian states with nonpositive partial transposition
(NPPT) are distillable [17], any distillation protocol must
include a non-Gaussian operation. This can be rephrased
saying that all entangled mixed states are bound entangled
in the Gaussian scenario. In this scenario, it is natural to
define the corresponding Gaussian versions of entangle-
ment measures that specify the entanglement properties of
these states under Gaussian local operations and classical
communication (GLOCC). For example, GED defines the
Gaussian distillable entanglement. The results of [15,16]
imply that GED � 0. However, these states may still be
useful, since perhaps secret bits can be extracted from them
using GLOCC.

In a similar way as for distillable entanglement, for any
entangled state one can denote by GKD the amount of
secret bits that can be extracted by GLOCC. This quantity
refers to the distribution of a secret key and, in principle, is
independent of entanglement distillability. Thus, secret bits
(GKD) appear as a resource (measure) especially suitable
for the analysis of entangled Gaussian states under
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Gaussian operations: while GED � 0 for all states, there
are states with positive GKD [11,13].

In this work we analyze the secrecy properties of
Gaussian states under Gaussian operations [18]. In a simi-
lar way as for entanglement distillation, it is assumed that
Alice and Bob share N independent copies of a known
Gaussian state. We introduce a Gaussian protocol for key
distillation and study its security, under the mentioned
assumption in the state preparation, in the following sce-
narios: (i) individual and finite coherent attacks, (ii) the
coherent attack proposed in Ref. [19], and (iii) any attack.
In the first case, we prove that all NPPT states are secure.
Then, it is shown that our security proof ceases to work for
some NPPT states under the second scenario. For the last
situation, using the recent techniques of Ref. [20], we
demonstrate the security of sufficiently entangled
Gaussian states.

We consider quantum systems of n canonical degrees of
freedom, often called modes, H � L2�Ren�. The commu-
tation relations for the canonical coordinates R �
�X1; P1; . . . ; Xn; Pn� � �R1; . . . ; R2n� read �Ra; Rb� �
i�Jn�ab, where a; b � 1; . . . ; 2n and

Jn � �n
i�1J; J �

�
0 1
	1 0

�
: (1)

The characteristic function, ���x�, of a state � is defined as
���x� � tr��W�x��, where W�x� � exp�	ixTR� are the so-
called Weyl operators. Gaussian states are those states such
that �� is a Gaussian function,

���x� � exp
�
ixTd	

1

4
xT�x

�
; (2)

where d is a 2n real vector, called a displacement vector
(DV), and � is a 2n
 2n symmetric real matrix, known as
a covariance matrix (CM). The positivity condition of �
implies that �	 iJn � 0. All the information about d and
� is contained in the first and second moments tr��Ri� and
tr��RiRj�.

In what follows we consider two parties, Alice and Bob,
that share a state � in a composite systems of n�m
modes. The global CM is

�AB �

�
�A C
CT �B

�
� iJn�m; (3)

where �A (�B) is the CM for the n-mode (m-mode)
Gaussian state of system A (B). The entanglement proper-
ties of � are completely specified by its CM.

The effect of partial transposition at the level of CMs can
be understood from the fact that this map is equivalent to
time reversal. After partial transposition on, say, A, the sign
of Alice’s momenta is changed while the rest of canonical
coordinates is kept unchanged. Denote by � the matrix
equal to the identity for the position coordinates and minus
the identity for the momenta. Partial transposition means
that �AB ! �0

AB � �A�AB�A. Therefore, the state � has
positive partial transposition (PPT) when �0

AB defines a
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positive operator; that is, �0
AB � iJn�m. The PPT criterion

provides a necessary and sufficient condition for separa-
bility for 1
 1 [21] and 1
 N Gaussian states [22], while
it is only a necessary condition for the rest of systems [22].
As said above, the nonpositivity of the partial transposition
is a necessary and sufficient condition for distillability
[17].

Two known results will play an important role in what
follows. First, any NPPT Gaussian state of n�m modes
can be mapped by GLOCC into an NPPT 1
 1 Gaussian
and symmetric state [17], whose CM [see Eq. (3)] is

�A � �B �

�
� 0
0 �

�
; C �

�
cx 0
0 	cp

�
; (4)

where � � 0 and cx � cp � 0. The positivity condition
reads �2 	 cxcp 	 1 � ��cx 	 cp�, while the entangle-
ment (NPPT) condition gives

�2 � cxcp 	 1< ��cx � cp�: (5)

Second, given an n-mode Gaussian state �1 with CM �1, it
is always possible to construct a 2n mode pure Gaussian
state j�12i such that tr2�j�12ih�12j� � �1 [23]. The global
CM �12 [see Eq. (3)] has �A � �1 and

�B � ��1�; C � JnS��
n
i�1

���������������
�2
k 	 1

q
12�S

	1�; (6)

where f�kg defines the symplectic spectrum of �1 and S is
the symplectic matrix such that ST�1S is diagonal.

Having collected all these facts, let us describe how
Alice and Bob can distill a key from a distillable n
m
Gaussian state using only Gaussian operations. Since all
the NPPT Gaussian states can be mapped into symmetric
and entangled states of two modes by GLOCC, we restrict
our analysis to this type of states. In equivalent terms, one
can think that the first step in the key distillation protocol is
the GLOCC transformation of [17] that transforms any
NPPT state into an entangled state of this family. Then,
both parties measure the X quadrature, where XA and XB
denote the measured operator and xA and xB the obtained
outcome. After communication, they accept only those
cases where jxAj � jxBj � x0. Each party associates the
logical bit 0 (1) to a positive (negative) result with the
probability p�i; j�, with i; j � 0; 1. This process transforms
the quantum state into a list of correlated classical bits
between Alice and Bob. Their error probability, that is, the
probability that their symbols do not coincide, is

%AB �

P
i�j

p�i; j�

P
i;j
p�i; j�

�
1

1� exp�4cxx20=��
2 	 c2x��

: (7)

In order to establish a key, Alice and Bob will now
apply the advantage distillation protocol introduced by
Maurer [24]. Alice generates the random bit b. Then, she
chooses N items from her list of symbols, ~bA �

�bA1; bA2; . . . ; bAN�, and sends to Bob the vector ~b such
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FIG. 1. Security analysis of symmetric 1
 1 Gaussian states
when cx � cp � c. All physical states are above the solid line.
The dashed line defines the entanglement limit, which coincides
with the security bound against incoherent attacks. States below
the dotted line are secure against any attack.
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that bAi�bi�bmod2;8i�1; . . . ;N, together with the list
of chosen symbols. Bob computes bBi � bi for his corre-
sponding symbols, and if all the results are equal, bBi �
bi � b0;8i, the bit is accepted. If not, the symbols are
discarded and the process is repeated for another vector.
The new error probability is (see also [25,26])

%AB;N �
�%AB�N

�1	 %AB�N � �%AB�N
�

�
%AB

1	 %AB

�
N
; (8)

which tends to an equality for N ! 1.
What is the information that Eve can obtain? As usual,

all the environment, all the degrees of freedom outside
Alice and Bob’s systems should be accessible to her.
This means that the global state including Eve is pure,
j�ABEi, and such that trE�j�ABEih�ABEj� � �AB [27].
Denote by je��i Eve’s states when Alice and Bob have
projected onto j � x0i. For the case of individual attacks, it
was shown in [25] that Eve’s error in the estimation of the
final bit b is bounded from below by a term proportional to
jhe��je		ij

N . Therefore, Alice and Bob can establish a
key (see [25] for more details) if

%AB
1	 %AB

< jhe��je		ij: (9)

More precisely, if this condition is fulfilled, there is always
a finite N such that the new list of symbols can be distilled
into a secret key using one-way protocols.

From Eq. (6), one can compute the global pure state
including Eve. Note that taking the Gaussian purification
does not imply any loss of generality on Eve’s individual
attack [27]. After projecting on j � x0i, Eve has a Gaussian
state of two modes, with the CM and DV for the states
je��i given by

d�� � 	

�����������������������������������������������������������
�2 � ��cx 	 cp� 	 cxcp 	 1

q
�� cx

�0; 0; x0; x0�;

��� �

��x 0

0 �	1
x

�
; �x �

� � cx
cx �

�
; (10)

while �		 � ��� and d		 � 	d��. Now, the overlap
between these two states is given by

jhe��je		ij
2� exp

�
	
4��2���cx	cp�	cxcp	1�x20

��cx

�
:

(11)

Substituting Eqs. (8) and (11) in (9) one can check, after
some algebra, that this condition is equivalent to the en-
tanglement condition of (5). That is, all the distillable
(NPPT) Gaussian states allow a secure key distribution
under individual attacks using Gaussian operations.
Moreover, the limits for NPPT entanglement and key dis-
tillation also coincide if Eve measures in a coherent way a
finite number NE � N of states before the reconciliation
process [28].
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Although the presented protocol has zero efficiency, one
can use continuity arguments and see that, for any NPPT
state, there exist small but finite widths dxA � dxB � dx
for Alice and Bob’s outcomes such that Eq. (9) still holds.
Actually, this condition is independent of the Gaussian
character of the state. This gives a secure protocol with
finite rate. Note also that despite Eq. (9) depending on x0,
the security of the protocol does not. When x0 increases,
Alice and Bob’s error probability decreases, but also Eve’s
states become more distinguishable.

One may wonder what happens when Eve is no longer
restricted to individual attacks. Indeed, a more powerful
Eve could wait until the end of the advantage distillation
protocol and measure in a coherent way all her N symbols
[19]. One can see that the corresponding security condition
is similar to Eq. (9), but replacing Eve’s states overlap by
its square. This new inequality is violated by some NPPT
states (see Fig. 1). Note that this only implies that the
analyzed protocol is not good for these states in this
more general scenario.

Nevertheless, using the recent techniques of Ref. [20],
we can find states for which the presented protocol allows
one to extract common bits secure against any attack. After
a successful X measurement on the state (4), Alice, Bob,
and Eve share an effective state

j�2
2
ABEi �

�����������������
1	 %AB

2

s
�j � �ije��i � j 	 	ije		i�

�

��������
%AB
2

r
�j � 	ije�	i � j 	 �ije	�i�: (12)

Then, it has been shown in Ref. [20] that the amount of
secret bits, R, Alice and Bob can extract from their known
quantum state by means of protocols using one-way com-
munication satisfies

R � I�xA:xB� 	 S��2
2
AB �; (13)
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FIG. 2. Schematic representation of quantum and classical key
distillation techniques from quantum states. In this work, Alice
and Bob perform only Gaussian operations.
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where I is the mutual information between their measure-
ment outputs and S��2
2

AB � the von Neumann entropy of
their reduced state. Indeed, it was shown in [20] that the
amount of information Eve has on Alice’s symbols is
bounded by the entropy of her local state, which is equal
to the entropy of Alice and Bob’s state. Note that this
quantity also measures how strong Eve is correlated to
the honest parties, since S��2
2

AB � specifies the entangle-
ment in the state j�2
2

ABEi for the partition AB	 E. In our
case, this condition turns out to be dependent on x0. Thus,
for any state, one has to look for a value of x0 such that
R> 0. Although we were not able to solve this problem
analytically, it can be attacked using numerical methods.
For example, the security curve for those states such that
cx � cp [see Eq. (3)] is shown in Fig. 1.

One can envisage different ways of improving the pre-
vious security analysis, e.g., finding better measurements
for Alice and Bob or new ways of processing their mea-
surement outcomes. A more interesting possibility consists
of allowing the honest parties to manipulate in a coherent
way several copies of their local states. Actually, in the
study of GKD with full generality, one should deal with
joint (although local and Gaussian) operations by Alice
and Bob. This defines a new type of Gaussian quantum
privacy amplification protocols [5] different from entan-
glement distillability where Alice and Bob’s goal is simply
to factor Eve out [15,18]. A related open question that
deserves further investigation is whether secret bits can
be extracted from PPT Gaussian states, i.e., strict bound
entangled states (cf. [8]).

Quantum and classical distillation (QD and CD) proto-
cols are two techniques that allow one to extract secret bits
from entangled states (see Fig. 2). In finite systems, there
are examples of nondistillable quantum states for which
the CD branch is possible [8]. Moving to continuous
variables systems and the Gaussian scenario, QD tech-
niques are useless for key agreement [15,16]. Our analysis
proves that CD is still useful for (i) all NPPT states under
finite coherent attacks and (ii) sufficiently entangled NPPT
states under general attacks. Thus, our results close the gap
between NPPT entanglement and security for the case of
finite-size coherent attacks.
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