45 research outputs found

    Spatial heterogeneity of benthic methane dynamics in the subaquatic canyons of the Rhone River Delta (Lake Geneva)

    Get PDF
    Heterogeneous benthic methane (CH4) dynamics from river deltas with important organic matter accumulation have been recently reported in various aquatic and marine environments. The spatial heterogeneity of dissolved CH4 concentrations and associated production and diffusion rates were investigated in the Rhone River Delta of Lake Geneva (Switzerland/France) using sediment cores taken as part of the éLEMO Project. Benthic CH4 dynamics within the complex subaquatic canyon structure of the Rhone Delta were compared (1) between three canyons of different sedimentation regimes, (2) along a longitudinal transect of the ‘active' canyon most influenced by the Rhone River, and (3) laterally across a canyon. Results indicated higher CH4 diffusion and production rates in the ‘active' compared to the other canyons, explained by more allochthonous carbon deposition. Within the active canyon, the highest diffusion and production rates were found at intermediate sites further along the canyon. Stronger resuspension of sediments directly in front of the river inflow was likely the cause for the variable emission rates found there. Evidence also suggests more CH4 production occurs on the levees (shoulders) of canyons due to preferred sedimentation in those locations. Our results from the heterogeneous Rhone delta in Lake Geneva further support the concept that high sedimentary CH4 concentrations should be expected in depositional environments with high inputs of allochthonous organic carbon

    500,000 Years of Environmental History in Eastern Anatolia: The PALEOVAN Drilling Project

    Get PDF
    International Continental Scientific Drilling Program (ICDP) drilled a complete succession of the lacustrine sediment sequence deposited during the last ~500,000 years in Lake Van, Eastern Anatolia (Turkey). Based on a detailed seismic site survey, two sites at a water depth of up to 360 m were drilled in summer 2010, and cores were retrieved from sub-lake-floor depths of 140 m (Northern Basin) and 220 m (Ahlat Ridge). To obtain a complete sedimentary section, the two sites were multiple-cored in order to investigate the paleoclimate history of a sensitive semi-arid region between the Black, Caspian, and Mediterranean seas. Further scientific goals of the PALEOVAN project are the reconstruction of earthquake activity, as well as the temporal, spatial, and compositional evolution of volcanism as reflected in the deposition of tephra layers. The sediments host organic matter from different sources and hence composition, which will be unravelled using biomarkers. Pathways for migration of continental and mantle-derived noble gases will be analyzed in pore waters. Preliminary 40Ar/39Ar single crystal dating of tephra layers and pollen analyses suggest that the Ahlat Ridge record encompasses more than half a million years of paleoclimate and volcanic/geodynamic history, providing the longest continental record in the entire Near East to date

    Climate change goes underground: effects of elevated atmospheric CO2 on microbial community structure and activities in the rhizosphere.

    Get PDF
    General concern about climate change has led to growing interest in the responses of terrestrial ecosystems to elevated concentrations of CO2 in the atmosphere. Experimentation during the last two to three decades using a large variety of approaches has provided sufficient information to conclude that enrichment of atmospheric CO2 may have severe impact on terrestrial ecosystems. This impact is mainly due to the changes in the organic C dynamics as a result of the effects of elevated CO2 on the primary source of organic C in soil, i.e., plant photosynthesis. As the majority of life in soil is heterotrophic and dependent on the input of plant-derived organic C, the activity and functioning of soil organisms will greatly be influenced by changes in the atmospheric CO2 concentration. In this review, we examine the current state of the art with respect to effects of elevated atmospheric CO2 on soil microbial communities, with a focus on microbial community structure. On the basis of the existing information, we conclude that the main effects of elevated atmospheric CO2 on soil microbiota occur via plant metabolism and root secretion, especially in C3 plants, thereby directly affecting the mycorrhizal, bacterial, and fungal communities in the close vicinity of the root. There is little or no direct effect on the microbial community of the bulk soil. In particular, we have explored the impact of these changes on rhizosphere interactions and ecosystem processes, including food web interactions

    Mechanical system for multiple thin film deposition

    No full text
    A simple and versatile mechanical system, capable of allowing monitored deposition of sequential thin films on any one of the five substrates from any one of the five independent sources, and through any one of the five masks, is described. The vapor sources are moved by rotation. The substrates, masks, and the shutter are moved by sliding racks. All these movements are affected by one push-pull, rotary, and 60° cone feedthrough. Every component is easily removable for cleaning. The evaporation sources are shielded by removable chimneys. The electrical connection for resistive heating of the source is made by a uniquely designed roller bearing contact

    Spatial heterogeneity of benthic methane dynamics in the subaquatic canyons of the Rhone River Delta (Lake Geneva)

    No full text
    Heterogeneous benthic methane (CH4) dynamics from river deltas with important organic matter accumulation have been recently reported in various aquatic and marine environments. The spatial heterogeneity of dissolved CH4 concentrations and associated production and diffusion rates were investigated in the Rhone River Delta of Lake Geneva (Switzerland/France) using sediment cores taken as part of the ELEMO Project. Benthic CH4 dynamics within the complex subaquatic canyon structure of the Rhone Delta were compared (1) between three canyons of different sedimentation regimes, (2) along a longitudinal transect of the ‘active' canyon most influenced by the Rhone River, and (3) laterally across a canyon. Results indicated higher CH4 diffusion and production rates in the ‘active' compared to the other canyons, explained by more allochthonous carbon deposition. Within the active canyon, the highest diffusion and production rates were found at intermediate sites further along the canyon. Stronger resuspension of sediments directly in front of the river inflow was likely the cause for the variable emission rates found there. Evidence also suggests more CH4 production occurs on the levees (shoulders) of canyons due to preferred sedimentation in those locations. Our results from the heterogeneous Rhone delta in Lake Geneva further support the concept that high sedimentary CH4 concentrations should be expected in depositional environments with high inputs of allochthonous organic carbon

    Biomarkers in Lake Van sediments reveal dry conditions in eastern Anatolia during 110.000-10.000 years B.P.

    Get PDF
    Lipid biomarkers were analyzed in Lake Van sediments covering the last 600 ka, with a focus on the period between 110 and 10 ka, when a broad maximum in pore water salinity as a relict from the past suggests dry conditions. The occurrence and distribution of biomarkers indicative for terrestrial plants (long-chain n-alkane C29), haptophyte algae (methyl alkenones C37) and halophilic archaea (archaeol) all point toward a dry climate in Lake Van region during this time interval. The hydrogen isotopic composition of C29 n-alkanes (δDC29) and C37 alkenones (δDC37) is enriched between MIS 4 and MIS 2, which is interpreted as a decrease in the regional ratio of precipitation to evaporation. Similarly, the low abundance of the acyclic glycerol dialkyl glycerol tetraether GDGT-0 relative to archaeol, quantified by the Archaeol and Caldarchaeol Ecometric (ACE) is assumed to reflect the presence of halophilic euryarchaeota adapted to high salinity water. The climate around Lake Van appears in phase with the Yammouneh basin 800 km southwest and Lake Urmia 250 km southeast of Lake Van over the last two glacial periods. The results highlight the potential of combining ACE, δDC29, and δDC37 for reconstructing salinity changes and regional precipitation to evaporation ratio from lake sediments
    corecore