1,358 research outputs found

    Low Levels of Physical Activity Increase Metabolic Responsiveness to Cold in a Rat (Rattus fuscipes)

    Get PDF
    Physical activity modulates expression of metabolic genes and may therefore be a prerequisite for metabolic responses to environmental stimuli. However, the extent to which exercise interacts with environmental conditions to modulate metabolism is unresolved. Hence, we tested the hypothesis that even low levels of physical activity are beneficial by improving metabolic responsiveness to temperatures below the thermal neutral zone, thereby increasing the capacity for substrate oxidation and energy expenditure.We used wild rats (Rattus fuscipes) to avoid potential effects of breeding on physiological phenotypes. Exercise acclimation (for 30 min/day on 5 days/week for 30 days at 60% of maximal performance) at 22°C increased mRNA concentrations of PGC1α, PPARδ, and NRF-1 in skeletal muscle and brown adipose tissue compared to sedentary animals. Lowering ambient temperature to 12°C caused further increases in relative expression of NRF-1 in skeletal muscle, and of PPARδ of brown adipose tissue. Surprisingly, relative expression of UCP1 increased only when both exercise and cold stimuli were present. Importantly, in sedentary animals cold acclimation (12°C) alone did not change any of the above variables. Similarly, cold alone did not increase maximum capacity for substrate oxidation in mitochondria (cytochrome c oxidase and citrate synthase activities) of either muscle or brown adipose tissue. Animals that exercised regularly had higher exercise induced metabolic rates in colder environments than sedentary rats, and temperature induced metabolic scope was greater in exercised rats.Physical activity is a necessary prerequisite for the expression of transcriptional regulators that influence a broad range of physiological functions from energy metabolism to cardiovascular function and nutrient uptake. A sedentary lifestyle leads to decreased daily energy expenditure because of a lack of direct use of energy and a muted metabolic response to ambient temperature, which can be reversed even by low levels of physical activity

    Facile synthesis of mononuclear early transition-metal complexes of κ3cyclo-tetrametaphosphate ([P4O12]4−) and cyclo-trimetaphosphate ([P3O9]3−)

    Get PDF
    We herein report the preparation of several mononuclear-metaphosphate complexes using simple techniques and mild conditions with yields ranging from 56% to 78%. Treatment of cyclo-tetrametaphosphate ([TBA]4[P4O12]·5H2O, TBA = tetra-n-butylammonium) with various metal sources including (CH3CN)3Mo(CO)3, (CH3CN)2Mo(CO)2(η3-C3H5)Cl, MoO2Cl2(OSMe2)2, and VOF3, leads to the clean and rapid formation of [TBA]4[(P4O12)Mo(CO)3]·2H2O, [TBA]3[(P4O12)Mo(CO)2(η3-C3H5)], [TBA]3[(P4O12)MoO2Cl] and [TBA]3[(P4O12)VOF2]·Et2O salts in isolated yields of 69, 56, 68, and 56% respectively. NMR spectroscopy, NMR simulations and single crystal X-ray studies reveal that the [P4O12]4− anion behaves as a tridentate ligand wherein one of the metaphosphate groups is not directly bound to the metal. cyclo-Trimetaphosphate-metal complexes were prepared using a similar procedure i.e., treatment of [PPN]3[P3O9]·H2O (PPN = bis(triphenylphosphine)iminium) with the metal sources (CH3CN)2Mo(CO)2(η3-C3H5)Cl, MoO2Cl2(OSMe2)2, MoOCl3, VOF3, WOCl4, and WO2Cl2(CH3CN)2 to produce the corresponding salts, [PPN]2[(P3O9)Mo(CO)2(η3-C3H5)], [PPN]2[(P3O9)MoO2Cl], [PPN]2[(P3O9)MoOCl2], [PPN]2[(P3O9)VOF2]·2CH2Cl2, and [PPN]2[(P3O9)WO2Cl] in isolated yields of 78, 56, 75, 59, and 77% respectively. NMR spectroscopy, NMR simulations and single-crystal X-ray studies indicate that the trianionic ligand [P3O9]3− in these complexes also has κ3 connectivity.Eni S.p.A. (Firm)Eni-MIT Solar Frontiers Center (Program

    Gas Sparged Adsorber for Decolourization Dye Effluent

    Get PDF
    The adsorption of basic dyestuff (Maxilon Red BL-3) from aqueous solution at 25 °C onto natural clay was studied. The clay showed high performance for dye removal, the maximum adsorption capacity of the natural clay was found to be 326 mg dye per g of natural clay. The experimental data were fitted to the Freundlich and Langmuir isotherm models. The best fitting isotherm was found to be the Langmuir isotherm. Mass balance calculation was carried out and the operating lines were used to calculate the amount of clay needed per unit volume of dye solution to reach the effluent concentration target. Gas sparged technique was proved to be very efficient technique, thus it was used to study the rate of dye removal from its solution using clay as adsorbent. A series of contact-time experiments was undertaken in a batch adsorber to assess the effect of the system variables, namely, gas flow rate, initial dye concentration, mass of clay and temperature of the solution, on the overall volumetric mass transfer coefficient. The study revealed that dye removal is diffusion controlled process

    Inverting Time-Dependent Harmonic Oscillator Potential by a Unitary Transformation and a New Class of Exactly Solvable Oscillators

    Get PDF
    A time-dependent unitary (canonical) transformation is found which maps the Hamiltonian for a harmonic oscillator with time-dependent real mass and real frequency to that of a generalized harmonic oscillator with time-dependent real mass and imaginary frequency. The latter may be reduced to an ordinary harmonic oscillator by means of another unitary (canonical) transformation. A simple analysis of the resulting system leads to the identification of a previously unknown class of exactly solvable time-dependent oscillators. Furthermore, it is shown how one can apply these results to establish a canonical equivalence between some real and imaginary frequency oscillators. In particular it is shown that a harmonic oscillator whose frequency is constant and whose mass grows linearly in time is canonically equivalent with an oscillator whose frequency changes from being real to imaginary and vice versa repeatedly.Comment: 7 pages, 1 figure include

    The Integration of Reconfigurable Filters for the Matching of Wideband Antennas

    Get PDF
    Abstract-This paper presents a technique to reduce the cost and overcome the high processing power needed to analyze the signals received by wideband antennas. The idea is based on matching a wideband antenna to a reconfigurable filter. This will allow an easier processing for the received signal and the replacement of the bank of filters needed after the antenna by one reconfigurable filter element. Two prototypes are shown to prove the validity of the proposed technique

    The anticariogenic effect of xylitol on seven Streptococcus mutans strains

    Get PDF
    Introduction: Xylitol can affect caries-inducing bacteria; however, different Streptococcus mutans strains might respond differently. Aim: To investigate the effect of xylitol on biofilm formation and metabolic activity of seven S. mutans strains. Methods: Seven S. mutans strains (UA159, A32-2, NG8, 10449, UA130, LM7, and OMZ175) were inoculated into 96-well microtiter plates and were tested with various xylitol concentrations (0.0, 0.0016, 0.0031, 0.0063, 0.0125, 0.025, 0.05, 0.1, 0.2, 0.4 and 0.8 g/mL) for inhibition of biofilm formation and bacterial metabolic activity by recording absorbance values. Lactate dehydrogenase and extracellular polysaccharide assays were conducted at 0.0, 0.1, 0.2, 0.4, and 0.8 g xylitol/mL. Data were analyzed by one-way analysis of variance, Tukey’s, paired t, and LSD tests at 0.05 significance level. Results: Xylitol produced a significant decrease in bacterial biofilm formation compared to controls at 0.4 g/mL, with almost complete lack of biofilm formation at 0.8 g/mL. This was consistent with metabolic activity which demonstrated a significant activity reduction occurring for all strains at 0.4 g/mL, and a complete lack of activity at 0.8 g/mL for all seven strains. There was a trend for lower LDH and EPS production with the increase in xylitol concentration especially with UA159, UA130, and NG8. Conclusion: Xylitol has a clear anticariogenic effect on S. mutans which was slightly different depending on the tested strain confirming that the benefit of xylitol might vary from one patient to another. The effect is more apparent at concentrations of 0.4 g/mL and higher

    Water in HD 209458b's atmosphere from 3.6 - 8 microns IRAC photometric observations in primary transit

    Get PDF
    The hot Jupiter HD 209458b was observed during primary transit at 3.6, 4.5, 5.8 and 8.0 microns using the Infrared Array Camera (IRAC) on the Spitzer Space Telescope. We detail here the procedures we adopted to correct for the systematic trends present in the IRAC data. The light curves were fitted including limb darkening effects and fitted using Markov Chain Monte Carlo and prayer-bead Monte Carlo techniques, finding almost identical results. The final depth measurements obtained by a combined Markov Chain Monte Carlo fit are at 3.6 microns, 1.469 +- 0.013 % and 1.448 +- 0.013 %; at 4.5 microns, 1.478 +- 0.017 % ; at 5.8 microns, 1.549 +- 0.015 % and at 8.0 microns 1.535 +- 0.011 %. Our results clearly indicate the presence of water in the planetary atmosphere. Our broad band photometric measurements with IRAC prevent us from determining the additional presence of other other molecules such as CO, CO2 and methane for which spectroscopy is needed. While water vapour with a mixing ratio of 10^-4-10^-3 combined with thermal profiles retrieved from the day-side may provide a very good fit to our observations, this data set alone is unable to resolve completely the degeneracy between water abundance and atmospheric thermal profile.Comment: 14 pages, 6 tables, 10 figures, Accepted for publication in MNRA
    corecore