23,370 research outputs found

    Bipartite graph partitioning and data clustering

    Full text link
    Many data types arising from data mining applications can be modeled as bipartite graphs, examples include terms and documents in a text corpus, customers and purchasing items in market basket analysis and reviewers and movies in a movie recommender system. In this paper, we propose a new data clustering method based on partitioning the underlying bipartite graph. The partition is constructed by minimizing a normalized sum of edge weights between unmatched pairs of vertices of the bipartite graph. We show that an approximate solution to the minimization problem can be obtained by computing a partial singular value decomposition (SVD) of the associated edge weight matrix of the bipartite graph. We point out the connection of our clustering algorithm to correspondence analysis used in multivariate analysis. We also briefly discuss the issue of assigning data objects to multiple clusters. In the experimental results, we apply our clustering algorithm to the problem of document clustering to illustrate its effectiveness and efficiency.Comment: Proceedings of ACM CIKM 2001, the Tenth International Conference on Information and Knowledge Management, 200

    A new class of (2+1)(2+1)-d topological superconductor with Z8\mathbb{Z}_8 topological classification

    Full text link
    The classification of topological states of matter depends on spatial dimension and symmetry class. For non-interacting topological insulators and superconductors the topological classification is obtained systematically and nontrivial topological insulators are classified by either integer or Z2Z_2. The classification of interacting topological states of matter is much more complicated and only special cases are understood. In this paper we study a new class of topological superconductors in (2+1)(2+1) dimensions which has time-reversal symmetry and a Z2\mathbb{Z}_2 spin conservation symmetry. We demonstrate that the superconductors in this class is classified by Z8\mathbb{Z}_8 when electron interaction is considered, while the classification is Z\mathbb{Z} without interaction.Comment: 5 pages main text and 3 pages appendix. 1 figur

    Effect of Statistical Fluctuation in Monte Carlo Based Photon Beam Dose Calculation on Gamma Index Evaluation

    Full text link
    The gamma-index test has been commonly adopted to quantify the degree of agreement between a reference dose distribution and an evaluation dose distribution. Monte Carlo (MC) simulation has been widely used for the radiotherapy dose calculation for both clinical and research purposes. The goal of this work is to investigate both theoretically and experimentally the impact of the MC statistical fluctuation on the gamma-index test when the fluctuation exists in the reference, the evaluation, or both dose distributions. To the first order approximation, we theoretically demonstrated in a simplified model that the statistical fluctuation tends to overestimate gamma-index values when existing in the reference dose distribution and underestimate gamma-index values when existing in the evaluation dose distribution given the original gamma-index is relatively large for the statistical fluctuation. Our numerical experiments using clinical photon radiation therapy cases have shown that 1) when performing a gamma-index test between an MC reference dose and a non-MC evaluation dose, the average gamma-index is overestimated and the passing rate decreases with the increase of the noise level in the reference dose; 2) when performing a gamma-index test between a non-MC reference dose and an MC evaluation dose, the average gamma-index is underestimated when they are within the clinically relevant range and the passing rate increases with the increase of the noise level in the evaluation dose; 3) when performing a gamma-index test between an MC reference dose and an MC evaluation dose, the passing rate is overestimated due to the noise in the evaluation dose and underestimated due to the noise in the reference dose. We conclude that the gamma-index test should be used with caution when comparing dose distributions computed with Monte Carlo simulation

    Chemical dynamics of triacetylene formation and implications to the synthesis of polyynes in Titan's atmosphere

    Get PDF
    For the last four decades, the role of polyynes such as diacetylene (HCCCCH) and triacetylene (HCCCCCCH) in the chemical evolution of the atmosphere of Saturn's moon Titan has been a subject of vigorous research. These polyacetylenes are thought to serve as an UV radiation shield in planetary environments; thus, acting as prebiotic ozone, and are considered as important constituents of the visible haze layers on Titan. However, the underlying chemical processes that initiate the formation and control the growth of polyynes have been the least understood to date. Here, we present a combined experimental, theoretical, and modeling study on the synthesis of the polyyne triacetylene (HCCCCCCH) via the bimolecular gas phase reaction of the ethynyl radical (CCH) with diacetylene (HCCCCH). This elementary reaction is rapid, has no entrance barrier, and yields the triacetylene molecule via indirect scattering dynamics through complex formation in a single collision event. Photochemical models of Titan's atmosphere imply that triacetylene may serve as a building block to synthesize even more complex polyynes such as tetraacetylene (HCCCCCCCCH)

    A GPU-based finite-size pencil beam algorithm with 3D-density correction for radiotherapy dose calculation

    Full text link
    Targeting at the development of an accurate and efficient dose calculation engine for online adaptive radiotherapy, we have implemented a finite size pencil beam (FSPB) algorithm with a 3D-density correction method on GPU. This new GPU-based dose engine is built on our previously published ultrafast FSPB computational framework [Gu et al. Phys. Med. Biol. 54 6287-97, 2009]. Dosimetric evaluations against Monte Carlo dose calculations are conducted on 10 IMRT treatment plans (5 head-and-neck cases and 5 lung cases). For all cases, there is improvement with the 3D-density correction over the conventional FSPB algorithm and for most cases the improvement is significant. Regarding the efficiency, because of the appropriate arrangement of memory access and the usage of GPU intrinsic functions, the dose calculation for an IMRT plan can be accomplished well within 1 second (except for one case) with this new GPU-based FSPB algorithm. Compared to the previous GPU-based FSPB algorithm without 3D-density correction, this new algorithm, though slightly sacrificing the computational efficiency (~5-15% lower), has significantly improved the dose calculation accuracy, making it more suitable for online IMRT replanning

    Spectral Analyses of the Nearest Persistent Ultraluminous X-Ray Source M33 X-8

    Full text link
    We provide a detailed analysis of 12 XMM observations of the nearest persistent extragalactic ultraluminous X-ray source (ULX), M33 X-8. No significant spectral evolution is detected between the observations, therefore we combine the individual observations to increase the signal-to-noise ratio for spectral fitting. The combined spectra are best fitted by the self-consistent p-free disk plus power-law component model with p = 0.571_{-0.030}^{+0.032}, kT_{in} = 1.38_{-0.08}^{+0.09} keV, and the flux ratio of the p-free disk component to the power-law component being 0.63:0.37 in the 0.3 -- 10 keV band. The fitting indicates that the black hole in M33 X-8 is of \sim 10 M_{\odot} and accretes at a super-Eddington rate (\sim 1.5 L_{Edd}), and the phase of the accretion disk is close to a slim disk (p = 0.5). We report, for the first time, that an extra power-law component is required in addition to the p-free disk model for ULXs. In super-Eddington cases, the power-law component may possibly result from the optically thin inner region f the disk or a comptonized corona similar to that of a standard thin disk.Comment: 11 pages, 1 table, 2 figures, accepted by PAS

    Relaxing the Irrevocability Requirement for Online Graph Algorithms

    Get PDF
    Online graph problems are considered in models where the irrevocability requirement is relaxed. Motivated by practical examples where, for example, there is a cost associated with building a facility and no extra cost associated with doing it later, we consider the Late Accept model, where a request can be accepted at a later point, but any acceptance is irrevocable. Similarly, we also consider a Late Reject model, where an accepted request can later be rejected, but any rejection is irrevocable (this is sometimes called preemption). Finally, we consider the Late Accept/Reject model, where late accepts and rejects are both allowed, but any late reject is irrevocable. For Independent Set, the Late Accept/Reject model is necessary to obtain a constant competitive ratio, but for Vertex Cover the Late Accept model is sufficient and for Minimum Spanning Forest the Late Reject model is sufficient. The Matching problem has a competitive ratio of 2, but in the Late Accept/Reject model, its competitive ratio is 3/2

    Ground-State Entanglement in Interacting Bosonic Graphs

    Full text link
    We consider a collection of bosonic modes corresponding to the vertices of a graph Γ.\Gamma. Quantum tunneling can occur only along the edges of Γ\Gamma and a local self-interaction term is present. Quantum entanglement of one vertex with respect the rest of the graph is analyzed in the ground-state of the system as a function of the tunneling amplitude τ.\tau. The topology of Γ\Gamma plays a major role in determining the tunneling amplitude τ∗\tau^* which leads to the maximum ground-state entanglement. Whereas in most of the cases one finds the intuitively expected result τ∗=∞\tau^*=\infty we show that it there exists a family of graphs for which the optimal value ofτ\tau is pushed down to a finite value. We also show that, for complete graphs, our bi-partite entanglement provides useful insights in the analysis of the cross-over between insulating and superfluid ground statesComment: 5 pages (LaTeX) 5 eps figures include

    Frequency control of smart base isolation system employing a novel adaptive magneto-rheological elastomer base isolator

    Full text link
    © The Author(s) 2015. In the past decades, base isolation techniques have become increasingly popular for seismic protection of civil structures owing to its capability of decoupling buildings from harmful ground motion. However, it has been recognised recently that the traditional passive base isolation technique could encounter a serious problem during earthquakes due its incapability in adjusting the isolation frequency to cope with the unpredictability and diversity of earthquakes. To address this challenge, a great deal of research efforts have been conducted to improve traditional base isolation systems, most of which focused on hybrid supplementary devices (passive, active and semi-active types) for the isolators to control displacement or to dissipate seismic energy. On the other hand, the most effective approach to address the aforementioned challenge should lay on varying isolator stiffness in real-time to achieve real-time spontaneous decoupling. A recent advance of the development of an adaptive magneto-rheological elastomer base isolator has brought such idea to reality as the new magneto-rheological elastomer base isolator is capable to alter its stiffness significantly in real-time. In this article, an innovative smart base isolation system employing such magneto-rheological elastomer isolator is proposed and a novel frequency control algorithm is developed to shift the fundamental frequency of the structure away from the dominant frequency range of earthquakes. Such design enables the building to avoid resonant state in real-time according to the on-coming spectrum of the earthquakes. Extensive simulation has been conducted using a five-storey benchmark model with the isolation system, and testing results indicate that the proposed control system is able to significantly suppress both the floor accelerations and inter-storey drifts simultaneously under different earthquakes
    • …
    corecore