1,182 research outputs found

    Superconductors with Topological Order

    Full text link
    We propose a mechanism of superconductivity in which the order of the ground state does not arise from the usual Landau mechanism of spontaneous symmetry breaking but is rather of topological origin. The low-energy effective theory is formulated in terms of emerging gauge fields rather than a local order parameter and the ground state is degenerate on topologically non-trivial manifolds. The simplest example of this mechanism of superconductivty is concretely realized as global superconductivty in Josephson junction arrays.Comment: 4 pages, no figure

    The 'petite negative' yeast Kluyveromyces lactis has a single gene expressing pyruvate decarboxylase activity

    Get PDF
    We cloned and sequenced the pyruvate decarboxylase (PDC; EC 4.1.1.1) structural gene KlPDCA in the yeast Kluyveromyces lactis and found it to be allelic to the previously isolated rag6 mutation. The putative amino acid sequence of the KlPdcAp appeared to be highly homologous to those of the yeast Pdc proteins identified so far. The disruption of KIPDCA indicated that it is the only PDC structural gene in K. lactis, as evidenced by the lack of PDC activity and ethanol production in the pdcAdelta strains and by the absence of growth on glucose in the presence of respiratory inhibitors. It was observed that expression of the KlPDCA gene is induced by glucose at the transcriptional level. Transcription of the gene was reduced in the ragl, rag2, rag5 and rag8 mutants, which are defective for the low-affinity glucose permease, phosphoglucose isomerase, hexokinase, and a positive regulator of RAG1 expression, respectively

    Chlamydia Hijacks ARF GTPases To Coordinate Microtubule Posttranslational Modifications and Golgi Complex Positioning.

    Get PDF
    The intracellular bacterium Chlamydia trachomatis develops in a parasitic compartment called the inclusion. Posttranslationally modified microtubules encase the inclusion, controlling the positioning of Golgi complex fragments around the inclusion. The molecular mechanisms by which Chlamydia coopts the host cytoskeleton and the Golgi complex to sustain its infectious compartment are unknown. Here, using a genetically modified Chlamydia strain, we discovered that both posttranslationally modified microtubules and Golgi complex positioning around the inclusion are controlled by the chlamydial inclusion protein CT813/CTL0184/InaC and host ARF GTPases. CT813 recruits ARF1 and ARF4 to the inclusion membrane, where they induce posttranslationally modified microtubules. Similarly, both ARF isoforms are required for the repositioning of Golgi complex fragments around the inclusion. We demonstrate that CT813 directly recruits ARF GTPases on the inclusion membrane and plays a pivotal role in their activation. Together, these results reveal that Chlamydia uses CT813 to hijack ARF GTPases to couple posttranslationally modified microtubules and Golgi complex repositioning at the inclusion.IMPORTANCEChlamydia trachomatis is an important cause of morbidity and a significant economic burden in the world. However, how Chlamydia develops its intracellular compartment, the so-called inclusion, is poorly understood. Using genetically engineered Chlamydia mutants, we discovered that the effector protein CT813 recruits and activates host ADP-ribosylation factor 1 (ARF1) and ARF4 to regulate microtubules. In this context, CT813 acts as a molecular platform that induces the posttranslational modification of microtubules around the inclusion. These cages are then used to reposition the Golgi complex during infection and promote the development of the inclusion. This study provides the first evidence that ARF1 and ARF4 play critical roles in controlling posttranslationally modified microtubules around the inclusion and that Chlamydia trachomatis hijacks this novel function of ARF to reposition the Golgi complex

    Analytical bunch compression studies for a linac-based electron accelerator

    Get PDF
    The current paper deals with analytical bunch compression studies for FLUTE whose results are compared to simulations. FLUTE is a linac-based electron accelerator with a design energy of approximately 40 MeV currently being constructed at the Karlsruhe Institute of Technology. One of the goals of FLUTE is to generate electron bunches with their length lying in the femtosecond regime. In the first phase this will be accomplished using a magnetic bunch compressor. This compressor forms the subject of the studies presented. The paper is divided into two parts. The first part deals with pure geometric investigations of the bunch compressor where space charge effects and the backreaction of bunches with coherent synchrotron radiation are neglected. The second part is dedicated to the treatment of space charge effects. The upshot is that the analytical results in the two parts agree quite well with what is obtained from simulations. This paper shall form the basis for future analytical studies of the FLUTE bunch compressor and of bunch compression, in general

    Transcriptional repression of Hox genes by C. elegans HP1/HPL and H1/HIS-24.

    No full text
    Elucidation of the biological role of linker histone (H1) and heterochromatin protein 1 (HP1) in mammals has been difficult owing to the existence of a least 11 distinct H1 and three HP1 subtypes in mice. Caenorhabditis elegans possesses two HP1 homologues (HPL-1 and HPL-2) and eight H1 variants. Remarkably, one of eight H1 variants, HIS-24, is important for C. elegans development. Therefore we decided to analyse in parallel the transcriptional profiles of HIS-24, HPL-1/-2 deficient animals, and their phenotype, since hpl-1, hpl-2, and his-24 deficient nematodes are viable. Global transcriptional analysis of the double and triple mutants revealed that HPL proteins and HIS-24 play gene-specific roles, rather than a general repressive function. We showed that HIS-24 acts synergistically with HPL to allow normal reproduction, somatic gonad development, and vulval cell fate decision. Furthermore, the hpl-2; his-24 double mutant animals displayed abnormal development of the male tail and ectopic expression of C. elegans HOM-C/Hox genes (egl-5 and mab-5), which are involved in the developmental patterning of male mating structures. We found that HPL-2 and the methylated form of HIS-24 specifically interact with the histone H3 K27 region in the trimethylated state, and HIS-24 associates with the egl-5 and mab-5 genes. Our results establish the interplay between HPL-1/-2 and HIS-24 proteins in the regulation of positional identity in C. elegans males

    On Abelian Multi-Chern-Simons Field Theories

    Get PDF
    In this paper a class of multi-Chern-Simons field theories which is relevant to the statistical mechanics of polymer systems is investigated. Motivated by the problems which one encounters in the treatment of these theories, a general procedure is presented to eliminate the Chern-Simons fields from their action. In this way it has been possible to derive an expression of the partition function of topologically linked polymers which depends explicitly on the topological numbers and does not have intractable nonlocal terms as it happened in previous approaches. The new formulation of multi-Chern-Simons field theories is then used to remove and clarify some inconsistencies and ambiguities which apparently affect field theoretical models of topologically linked polymers. Finally, the limit of disentangled polymers is discussed.Comment: 18 pages, plain LaTe

    Dimming the Powerhouse: Mitochondrial Dysfunction in the Liver and Skeletal Muscle of Intrauterine Growth Restricted Fetuses

    Get PDF
    Intrauterine growth restriction (IUGR) of the fetus, resulting from placental insufficiency (PI), is characterized by low fetal oxygen and nutrient concentrations that stunt growth rates of metabolic organs. Numerous animal models of IUGR recapitulate pathophysiological conditions found in human fetuses with IUGR. These models provide insight into metabolic dysfunction in skeletal muscle and liver. For example, cellular energy production and metabolic rate are decreased in the skeletal muscle and liver of IUGR fetuses. These metabolic adaptations demonstrate that fundamental processes in mitochondria, such as substrate utilization and oxidative phosphorylation, are tempered in response to low oxygen and nutrient availability. As a central metabolic organelle, mitochondria coordinate cellular metabolism by coupling oxygen consumption to substrate utilization in concert with tissue energy demand and accretion. In IUGR fetuses, reducing mitochondrial metabolic capacity in response to nutrient restriction is advantageous to ensure fetal survival. If permanent, however, these adaptations may predispose IUGR fetuses toward metabolic diseases throughout life. Furthermore, these mitochondrial defects may underscore developmental programming that results in the sequela of metabolic pathologies. In this review, we examine how reduced nutrient availability in IUGR fetuses impacts skeletal muscle and liver substrate catabolism, and discuss how enzymatic processes governing mitochondrial function, such as the tricarboxylic acid cycle and electron transport chain, are regulated. Understanding how deficiencies in oxygen and substrate metabolism in response to placental restriction regulate skeletal muscle and liver metabolism is essential given the importance of these tissues in the development of later lifer metabolic dysfunction

    Heterogeneous Mobile Phone Ownership and Usage Patterns in Kenya

    Get PDF
    The rapid adoption of mobile phone technologies in Africa is offering exciting opportunities for engaging with high-risk populations through mHealth programs, and the vast volumes of behavioral data being generated as people use their phones provide valuable data about human behavioral dynamics in these regions. Taking advantage of these opportunities requires an understanding of the penetration of mobile phones and phone usage patterns across the continent, but very little is known about the social and geographical heterogeneities in mobile phone ownership among African populations. Here, we analyze a survey of mobile phone ownership and usage across Kenya in 2009 and show that distinct regional, gender-related, and socioeconomic variations exist, with particularly low ownership among rural communities and poor people. We also examine patterns of phone sharing and highlight the contrasting relationships between ownership and sharing in different parts of the country. This heterogeneous penetration of mobile phones has important implications for the use of mobile technologies as a source of population data and as a public health tool in sub-Saharan Africa

    A laboratory based edge-Illumination x-ray phase-contrast imaging setup with two-directional sensitivity

    Get PDF
    We report on a preliminary laboratory based x-ray phase-contrast imaging system capable of achieving two directional phase sensitivity thanks to the use of L-shaped apertures. We show that in addition to apparent absorption, two-directional differential phase images of an object can be quantitatively retrieved by using only three input images. We also verify that knowledge of the phase derivatives along both directions allows for straightforward phase integration with no streak artefacts, a known problem common to all differential phase techniques. In addition, an analytical method for 2-directional dark field retrieval is proposed and experimentally demonstrated
    • …
    corecore